Home
Class 12
MATHS
Let f(x) = 1/(sqrt(18-x^(2))). The valu...

Let `f(x) = 1/(sqrt(18-x^(2)))`. The value of: `lim_(x to 3)(f(x) -f(3))/(x-3)` is:

A

0

B

`-1//9`

C

`-1//3`

D

`1//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow these steps: Given the function: \[ f(x) = \frac{1}{\sqrt{18 - x^2}} \] We need to find: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \] ### Step 1: Calculate \( f(3) \) First, we need to evaluate \( f(3) \): \[ f(3) = \frac{1}{\sqrt{18 - 3^2}} = \frac{1}{\sqrt{18 - 9}} = \frac{1}{\sqrt{9}} = \frac{1}{3} \] ### Step 2: Substitute into the limit expression Now substitute \( f(3) \) into the limit expression: \[ \lim_{x \to 3} \frac{f(x) - \frac{1}{3}}{x - 3} \] ### Step 3: Check the form of the limit If we directly substitute \( x = 3 \) into the limit, we get: \[ \frac{f(3) - f(3)}{3 - 3} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: \[ \lim_{x \to 3} \frac{f'(x)}{1} \] ### Step 5: Find \( f'(x) \) To find \( f'(x) \), we use the chain rule: \[ f(x) = (18 - x^2)^{-\frac{1}{2}} \] Using the chain rule: \[ f'(x) = -\frac{1}{2}(18 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(18 - x^2)^{\frac{3}{2}}} \] ### Step 6: Evaluate \( f'(3) \) Now we evaluate \( f'(3) \): \[ f'(3) = \frac{3}{(18 - 3^2)^{\frac{3}{2}}} = \frac{3}{(18 - 9)^{\frac{3}{2}}} = \frac{3}{9^{\frac{3}{2}}} = \frac{3}{27} = \frac{1}{9} \] ### Step 7: Conclusion Thus, the limit is: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = f'(3) = \frac{1}{9} \] So, the final answer is: \[ \boxed{\frac{1}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

The value of lim_(x rarr(1)/(2))((f(x)+x-1)^(3))/((x-(1)/(2))) is

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to