Home
Class 12
MATHS
Let f(x) = cot^(-1) ((3x-x^(3))/(1- 3x^(...

Let `f(x) = cot^(-1) ((3x-x^(3))/(1- 3x^(2)))` and `g(x) = sin^(-1) ((1-x^(2))/(1+x^(2)))` , then `lim_(x to t) (f(x) -f(t))/(g(x) - g(t))` is equal to :

A

`3/(2(1+ t^(2))`

B

`-3/2`

C

`3/2`

D

`-3/(2(1+t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we need to analyze the functions \( f(x) \) and \( g(x) \) and find the limit: \[ \lim_{x \to t} \frac{f(x) - f(t)}{g(x) - g(t)} \] where \[ f(x) = \cot^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right) \] and \[ g(x) = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right). \] ### Step 1: Recognize the relationship between \( f(x) \) and \( g(x) \) From the video transcript, we have the relationships: \[ \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \] and \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}. \] Using these identities, we can express \( f(x) \) in terms of \( g(x) \). ### Step 2: Express \( f(x) \) in terms of \( g(x) \) From the relationship given in the transcript, we can rewrite \( f(x) \): \[ f(x) = \frac{\pi}{2} - g\left(\frac{3x - x^3}{1 - 3x^2}\right). \] ### Step 3: Differentiate \( f(x) \) and \( g(x) \) Using L'Hôpital's Rule, we can differentiate the numerator and denominator: 1. Differentiate \( f(x) \): \[ f'(x) = -g'\left(\frac{3x - x^3}{1 - 3x^2}\right) \cdot \frac{d}{dx}\left(\frac{3x - x^3}{1 - 3x^2}\right). \] 2. Differentiate \( g(x) \): \[ g'(x) = \frac{1}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}} \cdot \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right). \] ### Step 4: Evaluate the limit using L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to t} \frac{f(x) - f(t)}{g(x) - g(t)} = \lim_{x \to t} \frac{f'(x)}{g'(x)}. \] ### Step 5: Substitute \( x = t \) After differentiating both functions, we substitute \( x = t \) to find the limit. ### Final Result After completing the differentiation and substitution, we will find that: \[ \lim_{x \to t} \frac{f(x) - f(t)}{g(x) - g(t)} = \text{some constant value}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :