Home
Class 12
MATHS
"lt"(x to infty) (3^(x+1) -5^(x+1))/(3^(...

`"lt"_(x to infty) (3^(x+1) -5^(x+1))/(3^(x) - 5^(x))=`

A

`-5`

B

`1//5`

C

5

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{3^{x+1} - 5^{x+1}}{3^x - 5^x} \] we will follow these steps: ### Step 1: Rewrite the expression We can rewrite the limit as: \[ \lim_{x \to \infty} \frac{3 \cdot 3^x - 5 \cdot 5^x}{3^x - 5^x} \] This allows us to factor out terms more easily. ### Step 2: Factor out the dominant term In both the numerator and the denominator, the term \(5^x\) will dominate as \(x\) approaches infinity. Therefore, we can factor \(5^x\) out of both the numerator and the denominator: \[ = \lim_{x \to \infty} \frac{5^x \left( \frac{3 \cdot 3^x}{5^x} - 5 \right)}{5^x \left( \frac{3^x}{5^x} - 1 \right)} \] ### Step 3: Simplify the expression Now we can cancel \(5^x\) from the numerator and denominator: \[ = \lim_{x \to \infty} \frac{\frac{3 \cdot 3^x}{5^x} - 5}{\frac{3^x}{5^x} - 1} \] ### Step 4: Substitute \( \left( \frac{3}{5} \right)^x \) Let \(y = \left( \frac{3}{5} \right)^x\). As \(x \to \infty\), \(y \to 0\): \[ = \lim_{y \to 0} \frac{3y - 5}{y - 1} \] ### Step 5: Evaluate the limit Now substituting \(y = 0\): \[ = \frac{3(0) - 5}{0 - 1} = \frac{-5}{-1} = 5 \] ### Final Answer Thus, the limit is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)(3^(x+1)-5^(x+1))/(3^(x)-5^(x))=5

lim_(x to - infty) [((x^(4) sin (1/x) + x^(2)))/((1+|x|^(3)))]=...

Lt_(x rarr0)((15)^(x)-5^(x)-3^(x)+1)/(1-cos4x)=