Home
Class 12
MATHS
"lt"(x to 2)(2^(x) -x^(2))/(x^(x) -2^(x)...

`"lt"_(x to 2)(2^(x) -x^(2))/(x^(x) -2^(x))`=

A

`(log 2-1)/(log 2+1)`

B

`(log 2+1)/(log 2-1)`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 2} \frac{2^x - x^2}{x^x - 2^x} \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \(x = 2\) directly into the expression: \[ \frac{2^2 - 2^2}{2^2 - 2^2} = \frac{4 - 4}{4 - 4} = \frac{0}{0} \] This is an indeterminate form \(0/0\), so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** \[ \frac{d}{dx}(2^x - x^2) = 2^x \ln(2) - 2x \] **Denominator:** \[ \frac{d}{dx}(x^x - 2^x) = x^x(1 + \ln(x)) - 2^x \ln(2) \] ### Step 3: Rewrite the limit with derivatives Now we rewrite the limit using the derivatives we found: \[ \lim_{x \to 2} \frac{2^x \ln(2) - 2x}{x^x(1 + \ln(x)) - 2^x \ln(2)} \] ### Step 4: Substitute \(x = 2\) again Now we substitute \(x = 2\) into the new expression: **Numerator:** \[ 2^2 \ln(2) - 2 \cdot 2 = 4 \ln(2) - 4 \] **Denominator:** \[ 2^2(1 + \ln(2)) - 2^2 \ln(2) = 4(1 + \ln(2)) - 4 \ln(2) = 4 \] So, we have: \[ \lim_{x \to 2} \frac{4 \ln(2) - 4}{4} \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{4(\ln(2) - 1)}{4} = \ln(2) - 1 \] ### Final Answer Thus, the limit is: \[ \ln(2) - 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Lt_(x rarr a)(2-(x)/(a))^((tan pi x)/(2))=

(x + 1) / (x (x ^ (2) -2x-3)) <= 0

Solve : (1)/(x) lt (2)/(x-2)

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

((x ^ (2) + 4x + 6) (x ^ (2) + x + 1)) / (x ^ (2) -x + 1) <= 0

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

Evaluate (Lt)_(x rarr2^(-))(|x-2|)/(x-2)