Home
Class 12
MATHS
lim(x to pi//4)(1- tan x)/(1-sqrt(2) sin...

`lim_(x to pi//4)(1- tan x)/(1-sqrt(2) sin x)` equals:

A

`1/sqrt(2)`

B

`1/2`

C

`1/(2sqrt(2))`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x} \), we will follow these steps: ### Step 1: Direct Substitution First, we substitute \( x = \frac{\pi}{4} \) into the expression. \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Substituting these values: \[ 1 - \tan\left(\frac{\pi}{4}\right) = 1 - 1 = 0 \] \[ 1 - \sqrt{2} \sin\left(\frac{\pi}{4}\right) = 1 - \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1 - 1 = 0 \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) = 1 - \tan x \) and \( g(x) = 1 - \sqrt{2} \sin x \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate both the numerator and the denominator. - The derivative of the numerator \( f(x) = 1 - \tan x \) is: \[ f'(x) = -\sec^2 x \] - The derivative of the denominator \( g(x) = 1 - \sqrt{2} \sin x \) is: \[ g'(x) = -\sqrt{2} \cos x \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{-\sqrt{2} \cos x} = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x}{\sqrt{2} \cos x} \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) Again Now we substitute \( x = \frac{\pi}{4} \) into the new limit: \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \quad \text{and} \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Thus, \[ \lim_{x \to \frac{\pi}{4}} \frac{2}{\sqrt{2} \cdot \frac{\sqrt{2}}{2}} = \frac{2}{1} = 2 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)s in x)

Putting z=x-(pi)/(4), show that lim_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)sin x)=2

Find lim {x rarr (pi) / (4)} (1-tan x) / (1-sqrt (2) sin x)

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

lim_(x to 1) (1 - x) tan ((pi x)/2) =… .

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is