Home
Class 12
MATHS
lim(x to a) (x^(n) -a^(n))/(x-a)=...

`lim_(x to a) (x^(n) -a^(n))/(x-a)`=

A

`na^(n)`

B

`na^(n-1)`

C

0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a} \frac{x^n - a^n}{x - a} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Limit Form**: We start with the limit: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} \] When we substitute \( x = a \), we get: \[ \frac{a^n - a^n}{a - a} = \frac{0}{0} \] This is an indeterminate form. **Hint**: Recognize that \( \frac{0}{0} \) is an indeterminate form, which indicates that we can apply L'Hôpital's Rule. 2. **Apply L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] where \( f(x) = x^n - a^n \) and \( g(x) = x - a \). 3. **Differentiate the Numerator and Denominator**: We differentiate the numerator and the denominator: - The derivative of the numerator \( f(x) = x^n - a^n \) is: \[ f'(x) = nx^{n-1} \] - The derivative of the denominator \( g(x) = x - a \) is: \[ g'(x) = 1 \] 4. **Re-evaluate the Limit**: Now we can substitute back into the limit: \[ \lim_{x \to a} \frac{nx^{n-1}}{1} \] Substituting \( x = a \): \[ = n a^{n-1} \] 5. **Final Result**: Thus, we conclude that: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1} \] ### Summary: The limit evaluates to: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 3) (x^(n) - 3^(n))/(x - 3) = 1458 and n in N , find n.

If lim_(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_(x to a) (x^(m)-a^(m))/(x^(n)-a^(n)) is equal to

lim_(x rarr -a) (x^(n)+a^(n))/(x+a) (where n is an odd natural number)

Evaluate: lim_(x rarr a) [(x^(n)-a^(n))/(x^(m)-a^(m))] .

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

lim_(x rarr3)(x^(n)-3^(n))/(x-3)=405 find n>0

lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80 amd m in N, then find the value of n