Home
Class 12
MATHS
lim(x to a) ((cos x- cos a)/(cot x - cot...

`lim_(x to a) ((cos x- cos a)/(cot x - cot a))`=

A

`1/2 sin^(3)a`

B

`1/2 "cosec"^(3)a`

C

`sin^(3)a`

D

`"cosec"^(3)a `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a} \frac{\cos x - \cos a}{\cot x - \cot a} \), we will first analyze the expression. ### Step 1: Identify the limit form When we substitute \( x = a \) directly into the expression, both the numerator and denominator become zero: - Numerator: \( \cos a - \cos a = 0 \) - Denominator: \( \cot a - \cot a = 0 \) This gives us the indeterminate form \( \frac{0}{0} \), which allows us to apply L'Hôpital's rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's rule, we can differentiate the numerator and the denominator separately: - Derivative of the numerator \( \cos x - \cos a \): \[ \frac{d}{dx}(\cos x) = -\sin x \] The derivative of \( -\cos a \) is 0 since it is a constant. - Derivative of the denominator \( \cot x - \cot a \): \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] The derivative of \( -\cot a \) is also 0 since it is a constant. ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit using these derivatives: \[ \lim_{x \to a} \frac{\cos x - \cos a}{\cot x - \cot a} = \lim_{x \to a} \frac{-\sin x}{-\csc^2 x} \] This simplifies to: \[ \lim_{x \to a} \frac{\sin x}{\csc^2 x} = \lim_{x \to a} \sin x \cdot \sin^2 x = \lim_{x \to a} \sin^3 x \] ### Step 4: Substitute \( x = a \) Now we can substitute \( x = a \): \[ \sin^3 a \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to a} \frac{\cos x - \cos a}{\cot x - \cot a} = \sin^3 a \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr a)(cos x-cos a)/(cot x-cot a)=

lim_(x rarr0)(cos ecx-cot x)

lim_(x rarr0)(cos x)^(cot x)

(cos ec x+cot x)/(cos ecx-cotx)

lim_(xrarr0) (cos ec x -cot x)

lim_ (x rarr o) (cos ecx-cot x) / (x)

lim_(x to (pi)/(2))(a^(cot x) -a^(cosx))/(cot x- cot x ) is equalt o