Home
Class 12
MATHS
lim(t to 0) (sqrt(cos t)- root(3)(cos t)...

`lim(t to 0) (sqrt(cos t)- root(3)(cos t))/(sin^(2)t)`=

A

`1/3`

B

`1/6`

C

`-1/12`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{t \to 0} \frac{\sqrt{\cos t} - \sqrt[3]{\cos t}}{\sin^2 t}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( t = 0 \) into the expression. We find: \[ \sqrt{\cos(0)} - \sqrt[3]{\cos(0)} = \sqrt{1} - \sqrt[3]{1} = 1 - 1 = 0, \] and \[ \sin^2(0) = 0. \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. ### Step 3: Differentiate the numerator and denominator The numerator is \[ \sqrt{\cos t} - \sqrt[3]{\cos t}. \] We differentiate it: 1. The derivative of \( \sqrt{\cos t} = \cos^{1/2} t \) is \[ \frac{1}{2} \cos^{-1/2} t \cdot (-\sin t) = -\frac{\sin t}{2\sqrt{\cos t}}. \] 2. The derivative of \( \sqrt[3]{\cos t} = \cos^{1/3} t \) is \[ \frac{1}{3} \cos^{-2/3} t \cdot (-\sin t) = -\frac{\sin t}{3\sqrt[3]{\cos^2 t}}. \] Thus, the derivative of the numerator is: \[ -\frac{\sin t}{2\sqrt{\cos t}} + \frac{\sin t}{3\sqrt[3]{\cos^2 t}}. \] The denominator is \( \sin^2 t \), and its derivative is \[ 2\sin t \cos t. \] ### Step 4: Rewrite the limit using derivatives Now we rewrite the limit using the derivatives: \[ \lim_{t \to 0} \frac{-\frac{\sin t}{2\sqrt{\cos t}} + \frac{\sin t}{3\sqrt[3]{\cos^2 t}}}{2\sin t \cos t}. \] ### Step 5: Simplify the limit We can factor out \( \sin t \) from the numerator: \[ \lim_{t \to 0} \frac{\sin t \left(-\frac{1}{2\sqrt{\cos t}} + \frac{1}{3\sqrt[3]{\cos^2 t}}\right)}{2\sin t \cos t}. \] Cancelling \( \sin t \) (valid since \( \sin t \neq 0 \) for \( t \neq 0 \)) gives: \[ \lim_{t \to 0} \frac{-\frac{1}{2\sqrt{\cos t}} + \frac{1}{3\sqrt[3]{\cos^2 t}}}{2\cos t}. \] ### Step 6: Evaluate the limit Now we substitute \( t = 0 \): 1. \( \cos(0) = 1 \) 2. \( \sqrt{\cos(0)} = 1 \) 3. \( \sqrt[3]{\cos^2(0)} = 1 \) Thus, we have: \[ \frac{-\frac{1}{2} + \frac{1}{3}}{2} = \frac{-\frac{3}{6} + \frac{2}{6}}{2} = \frac{-\frac{1}{6}}{2} = -\frac{1}{12}. \] ### Final Result Therefore, the limit is \[ \boxed{-\frac{1}{12}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(t tooo)t(sqrt (t^(2)+1)-t)

x=sqrt(sin 2t),y=sqrt(cos 2 t)

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t))

lim_(t rarr0)((2)/(t^(2))+(1)/(cos t-1))

2int_(0)^(t)(1-cos t)/(t)dt

lim_(x rarr0)(t[sin t-t cos t])/(t^(2))

Find the value of f(t)=sum_(k=1)^(n)sin(2Kt)(cos(n+1)t cos(nt))/(cos t)(sin(n+1)t sin(nt))/(sin t)sin(n+1)t sin(nt)

x=a (t-sin t) , y =a (1-cos t)