Home
Class 12
MATHS
If f(x) = sin (e^(x-2)-1)/(log (x-1)) th...

If `f(x) = sin (e^(x-2)-1)/(log (x-1))` then `lim_(x to 2)(f(x))` is given

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{\sin(e^{x-2} - 1)}{\log(x-1)} \) as \( x \) approaches 2, we can follow these steps: ### Step 1: Substitute the limit into the function First, we substitute \( x = 2 \) into the function: \[ f(2) = \frac{\sin(e^{2-2} - 1)}{\log(2-1)} = \frac{\sin(e^0 - 1)}{\log(1)} = \frac{\sin(0)}{0} \] This results in the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) \) is the numerator and \( g(x) \) is the denominator. ### Step 3: Differentiate the numerator and denominator 1. **Numerator**: \( f(x) = \sin(e^{x-2} - 1) \) - The derivative is: \[ f'(x) = \cos(e^{x-2} - 1) \cdot \frac{d}{dx}(e^{x-2} - 1) = \cos(e^{x-2} - 1) \cdot e^{x-2} \] 2. **Denominator**: \( g(x) = \log(x-1) \) - The derivative is: \[ g'(x) = \frac{1}{x-1} \] ### Step 4: Rewrite the limit using derivatives Now we can rewrite the limit: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\cos(e^{x-2} - 1) \cdot e^{x-2}}{\frac{1}{x-1}} = \lim_{x \to 2} \cos(e^{x-2} - 1) \cdot e^{x-2} \cdot (x-1) \] ### Step 5: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the new limit: \[ = \cos(e^{2-2} - 1) \cdot e^{2-2} \cdot (2-1) = \cos(0) \cdot e^0 \cdot 1 = 1 \cdot 1 \cdot 1 = 1 \] ### Final Answer Thus, we conclude that: \[ \lim_{x \to 2} f(x) = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

If f(x)=sin log_(e){(sqrt(4-x^(2)))/(1-x)}, then the domain of f(x) is and its range is