Home
Class 12
MATHS
Lt(x to a) sqrt((a^(2) -x^(2))) cot {pi/...

`Lt_(x to a) sqrt((a^(2) -x^(2))) cot {pi/2sqrt((a-x)/(a+x)))}=`

A

`-(4a)/pi`

B

`-(2a)/pi`

C

`(2a)/pi`

D

`(4a)/pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to a} \sqrt{a^2 - x^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the expression: \[ L = \lim_{x \to a} \sqrt{a^2 - x^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \] As \( x \to a \), both \( \sqrt{a^2 - x^2} \) and \( \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \) approach 0, leading to an indeterminate form \( 0 \cdot 0 \). ### Step 2: Simplify the Square Root We can express \( \sqrt{a^2 - x^2} \) as: \[ \sqrt{a^2 - x^2} = \sqrt{(a - x)(a + x)} \] Thus, we rewrite \( L \): \[ L = \lim_{x \to a} \sqrt{(a - x)(a + x)} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \] ### Step 3: Analyze the Cotangent Function Next, we analyze the term \( \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \). As \( x \to a \), \( \sqrt{\frac{a - x}{a + x}} \) approaches \( 0 \): \[ \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) = \frac{\cos \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)}{\sin \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \] Using the small angle approximation, \( \sin z \approx z \) and \( \cos z \approx 1 \) for small \( z \): \[ \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \approx \frac{1}{\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}} \] ### Step 4: Substitute Back into the Limit Now substituting back into our limit: \[ L = \lim_{x \to a} \sqrt{(a - x)(a + x)} \cdot \frac{2}{\pi} \cdot \frac{1}{\sqrt{\frac{a - x}{a + x}}} \] This simplifies to: \[ L = \lim_{x \to a} \frac{2\sqrt{(a - x)(a + x)}}{\pi \sqrt{\frac{a - x}{a + x}}} \] Rearranging gives: \[ L = \lim_{x \to a} \frac{2\sqrt{(a + x)(a - x)}}{\pi} \cdot \sqrt{\frac{a + x}{a - x}} = \lim_{x \to a} \frac{2(a + x)}{\pi} \] ### Step 5: Evaluate the Limit As \( x \to a \): \[ L = \frac{2(2a)}{\pi} = \frac{4a}{\pi} \] ### Final Answer Thus, the limit is: \[ \boxed{\frac{4a}{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr a)sqrt(a^(2)-x^(2))cot(pi)/(2)sqrt((a-x)/(a+x)) is (2a)/(pi)(b)-(2a)/(pi) (c) (4a)/(pi)(d)-(4a)/(pi)

Evaluate underset( x rarra^(-))("lim") [ sqrt( a^(2) - x^(2)). cot { ( pi)/( 2) . sqrt((a-x)/( a+x))} ]

2sqrt(cot(x^(2)))

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

cot^(-1)(sqrt(1+x^2)-x)