Home
Class 12
MATHS
If lim(x to 1) sec^(-1)[lambda^(2)/(log ...

If `lim_(x to 1) sec^(-1)[lambda^(2)/(log x) - lambda^(2)/(x-1)]` exists then `lambda in`

A

`[-infty, -sqrt(2)]`

B

`[sqrt(2), infty]`

C

`[-infty, - sqrt(2)] cup [sqrt(2), infty]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to analyze the expression given in the limit and find the conditions under which it exists. The limit we need to evaluate is: \[ L = \lim_{x \to 1} \sec^{-1}\left[\frac{\lambda^2}{\log x} - \frac{\lambda^2}{x-1}\right] \] ### Step 1: Change of Variable Let \( t = x - 1 \). As \( x \to 1 \), \( t \to 0 \). Therefore, we can rewrite the limit in terms of \( t \): \[ L = \lim_{t \to 0} \sec^{-1}\left[\frac{\lambda^2}{\log(1+t)} - \frac{\lambda^2}{t}\right] \] ### Step 2: Expand \(\log(1+t)\) Using the Taylor series expansion for \(\log(1+t)\) around \( t = 0 \): \[ \log(1+t) \approx t - \frac{t^2}{2} + O(t^3) \] Substituting this into our limit gives: \[ L = \lim_{t \to 0} \sec^{-1}\left[\frac{\lambda^2}{t - \frac{t^2}{2} + O(t^3)} - \frac{\lambda^2}{t}\right] \] ### Step 3: Simplify the Expression Now, simplifying the expression inside the secant inverse: \[ \frac{\lambda^2}{t - \frac{t^2}{2}} - \frac{\lambda^2}{t} = \frac{\lambda^2 t - \lambda^2(t - \frac{t^2}{2})}{t(t - \frac{t^2}{2})} = \frac{\lambda^2 \frac{t^2}{2}}{t(t - \frac{t^2}{2})} \] This simplifies to: \[ \frac{\lambda^2}{2(t - \frac{t^2}{2})} \] ### Step 4: Evaluate the Limit Now we can rewrite the limit as: \[ L = \lim_{t \to 0} \sec^{-1}\left[\frac{\lambda^2}{2t}\right] \] As \( t \to 0 \), \( \frac{\lambda^2}{2t} \to \infty \), and thus \( \sec^{-1}\left[\frac{\lambda^2}{2t}\right] \to \frac{\pi}{2} \) if \( \lambda^2 > 0 \). ### Step 5: Condition for Existence For the limit to exist, the argument of secant inverse must be in the range of secant inverse function. The secant inverse function is defined for: \[ x \leq -1 \quad \text{or} \quad x \geq 1 \] Thus, we need: \[ \frac{\lambda^2}{2t} \geq 1 \quad \text{as } t \to 0 \] This implies: \[ \lambda^2 \geq 2 \quad \Rightarrow \quad \lambda \geq \sqrt{2} \quad \text{or} \quad \lambda \leq -\sqrt{2} \] ### Final Result Thus, the values of \( \lambda \) for which the limit exists are: \[ \lambda \in (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)sec^(-1)((lambda^(2))/(ln x)-(lambda^(2))/(x-1)) exists then lambda belong to

Number of integral values of lambda for which limsec ^(-1)((lambda^(2))/(log_(ex))-(lambda^(2))/(x-1)) does not exist is a.1 b.2 c.3 d.4

If cos ec^(-1)x+cos^(-1)+sec^(-1)z>=lambda^(@)-sqrt(2 pi lambda)+3 pi where lambda is a real number then

lim_(x rarr5)(x^(lambda)-5^(lambda))/(x-5)

lim_(x to 2) (2^(x) + 2^(2 -x) - 5)/((1)/(sqrt(2^(x))) + lambda (2)^(1 - x)) (lambda in R) has non zero value, which can be

If x=(4 lambda)/(1+lambda^(2)) and y=(2-2 lambda^(2))/(1+lambda^(2)) where lambda is a real parameter and Z=x^(2)+y^(2)-xy then possible values of Z can be

lim_(x rarr oo)((x+lambda)/(x-lambda))^(x)=4 then lambda

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :