Home
Class 12
MATHS
The value of lim(x to a)(log(x-a))/log(e...

The value of `lim_(x to a)(log(x-a))/log(e^(x) - e^(a))` is:

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a} \frac{\log(x - a)}{\log(e^x - e^a)} \), we will follow these steps: ### Step 1: Direct Substitution First, we will substitute \( x = a \) directly into the limit: \[ \lim_{x \to a} \frac{\log(x - a)}{\log(e^x - e^a)} = \frac{\log(a - a)}{\log(e^a - e^a)} = \frac{\log(0)}{\log(0)} \] This results in the indeterminate form \( \frac{-\infty}{-\infty} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] Here, \( f(x) = \log(x - a) \) and \( g(x) = \log(e^x - e^a) \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate \( f(x) \) and \( g(x) \): - The derivative of the numerator: \[ f'(x) = \frac{1}{x - a} \] - The derivative of the denominator: \[ g'(x) = \frac{1}{e^x - e^a} \cdot e^x = \frac{e^x}{e^x - e^a} \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{\frac{1}{x - a}}{\frac{e^x}{e^x - e^a}} = \lim_{x \to a} \frac{(e^x - e^a)}{(x - a) e^x} \] ### Step 5: Substitute Again Substituting \( x = a \) again gives us: \[ = \frac{(e^a - e^a)}{(a - a)e^a} = \frac{0}{0} \] This is still an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 6: Differentiate Again We differentiate the numerator and denominator again: - The derivative of the numerator \( e^x - e^a \) is \( e^x \). - The derivative of the denominator \( (x - a)e^x \) using the product rule is: \[ e^x + (x - a)e^x = e^x(1 + (x - a)) \] ### Step 7: Rewrite the Limit Again Now we rewrite the limit: \[ \lim_{x \to a} \frac{e^x}{e^x(1 + (x - a))} = \lim_{x \to a} \frac{1}{1 + (x - a)} \] ### Step 8: Final Substitution Substituting \( x = a \): \[ = \frac{1}{1 + (a - a)} = \frac{1}{1} = 1 \] ### Conclusion Thus, the value of the limit is: \[ \lim_{x \to a} \frac{\log(x - a)}{\log(e^x - e^a)} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is

Evaluate: lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))

The value of lim_(x to e) (log x^(2)-2)/(sqrt(x)-sqrt(e)) is

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

The value of lim_(x rarr oo)(log_(e)(log_(e)x))/(e^(sqrt(x)))quad is

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

Find the value of lim_(x rarr e)(log_(e)x)/(x-e)

Evaluate lim_(xtooo) (log_(e)x)/(x)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)