Home
Class 12
MATHS
"lt"(n to infty)[tan {(pi-4)/4 +(1+1/n)^...

`"lt"_(n to infty)[tan {(pi-4)/4 +(1+1/n)^a}]^(n)` =

A

`e^(a)`

B

`e^(2a)`

C

`e^(0)`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \tan \left( \frac{\pi - 4}{4} + \left(1 + \frac{1}{n}\right)^a \right) \right)^n, \] we will follow these steps: ### Step 1: Simplifying the expression inside the tangent First, we analyze the term inside the tangent function as \( n \) approaches infinity: \[ \left(1 + \frac{1}{n}\right)^a \to 1 \quad \text{as } n \to \infty. \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \tan\left(\frac{\pi - 4}{4} + 1\right)^n. \] ### Step 2: Calculate the value of \(\frac{\pi - 4}{4} + 1\) Now, we calculate: \[ \frac{\pi - 4}{4} + 1 = \frac{\pi - 4 + 4}{4} = \frac{\pi}{4}. \] ### Step 3: Substitute back into the limit Now, we substitute this back into our limit: \[ \lim_{n \to \infty} \left(\tan\left(\frac{\pi}{4}\right)\right)^n. \] ### Step 4: Evaluate \(\tan\left(\frac{\pi}{4}\right)\) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1. \] Thus, we have: \[ \lim_{n \to \infty} 1^n. \] ### Step 5: Final evaluation of the limit Since \( 1^n = 1 \) for any value of \( n \), we conclude that: \[ \lim_{n \to \infty} 1^n = 1. \] ### Final Result Therefore, the final result of the limit is: \[ \boxed{1}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(n to infty) [1- log(1+1/n)^(n-1)] is…………

Evaluate Lim_ (n-> oo) (tan ((pi-4) / 4 + (1 + 1 / n) ^ alpha)) ^ n (alpha epsilon Q)

lim_ (n rarr oo) (1) / (n) [tan ((pi) / (4n)) + tan ((2 pi) / (4n)) + ... tan ((n pi) / (4n) )]

tan {n (pi) / (2) + (- 1) ^ (n) (pi) / (4)} = 1