Home
Class 12
MATHS
lim(n to infty) log(n-1)(n) log(n)(n+1)…...

`lim_(n to infty) log_(n-1)(n) log_(n)(n+1)….log_(n^(k)-1) (n^(k))` is equal to:

A

k

B

2k

C

3k

D

4k

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \log_{n-1}(n) \log_{n}(n+1) \cdots \log_{n^{k}-1}(n^{k}), \] we will break it down step by step. ### Step 1: Rewrite the logarithms in terms of natural logarithms Using the change of base formula for logarithms, we can rewrite each term: \[ \log_{a}(b) = \frac{\log(b)}{\log(a)}. \] Thus, we can express each logarithm in the product as follows: \[ \log_{n-1}(n) = \frac{\log(n)}{\log(n-1)}, \quad \log_{n}(n+1) = \frac{\log(n+1)}{\log(n)}, \quad \ldots, \quad \log_{n^{k}-1}(n^{k}) = \frac{\log(n^{k})}{\log(n^{k}-1)}. \] ### Step 2: Write the product of logarithms The limit can now be rewritten as: \[ \lim_{n \to \infty} \frac{\log(n)}{\log(n-1)} \cdot \frac{\log(n+1)}{\log(n)} \cdots \frac{\log(n^{k})}{\log(n^{k}-1)}. \] ### Step 3: Simplify the product Notice that in this product, most terms will cancel out. Specifically, we can see that: \[ \frac{\log(n)}{\log(n-1)} \cdot \frac{\log(n+1)}{\log(n)} \cdots \frac{\log(n^{k})}{\log(n^{k}-1)} = \frac{\log(n^{k})}{\log(n-1)} \cdot \frac{\log(n+1)}{\log(n^{k}-1)}. \] ### Step 4: Analyze the limit as \( n \to \infty \) As \( n \to \infty \): - \(\log(n) \to \infty\) - \(\log(n-1) \to \infty\) - \(\log(n+1) \to \infty\) - \(\log(n^{k}) = k \log(n) \to \infty\) - \(\log(n^{k}-1) \to \infty\) Thus, we are dealing with an indeterminate form of type \(\frac{\infty}{\infty}\). ### Step 5: Apply L'Hôpital's Rule To resolve the indeterminate form, we apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. Differentiate the numerator: \(\frac{d}{dn} \log(n^{k}) = \frac{k}{n}\). 2. Differentiate the denominator: \(\frac{d}{dn} \log(n-1) = \frac{1}{n-1}\). Now we can write: \[ \lim_{n \to \infty} \frac{k/n}{1/(n-1)} = \lim_{n \to \infty} \frac{k(n-1)}{n} = k \cdot \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = k. \] ### Final Result Thus, we conclude that: \[ \lim_{n \to \infty} \log_{n-1}(n) \log_{n}(n+1) \cdots \log_{n^{k}-1}(n^{k}) = k. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(n to infty) [1- log(1+1/n)^(n-1)] is…………

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to

N=log_(2)5*log_((1)/(6))2*log_(3)((1)/(6)),then3^(N) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to