Home
Class 12
MATHS
lim(x to 0)1/x[int(y)^(0) e^(sin^(2)t) d...

`lim_(x to 0)1/x[int_(y)^(0) e^(sin^(2)t) dt - int_(x+y)^(0) e^(sin^(2)t) dt]` is equal to:

A

`e^(sin^(2)y)`

B

`sin 2y e^(sin^(2)) y`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1}{x} \left( \int_{y}^{0} e^{\sin^2 t} \, dt - \int_{x+y}^{0} e^{\sin^2 t} \, dt \right), \] we can start by rewriting the expression inside the limit. ### Step 1: Rewrite the integrals Using the property of definite integrals, we can express the difference of integrals as: \[ \int_{y}^{0} e^{\sin^2 t} \, dt - \int_{x+y}^{0} e^{\sin^2 t} \, dt = \int_{y}^{x+y} e^{\sin^2 t} \, dt. \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{1}{x} \int_{y}^{x+y} e^{\sin^2 t} \, dt. \] ### Step 2: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, giving us the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit exists. Let \( f(x) = \int_{y}^{x+y} e^{\sin^2 t} \, dt \) and \( g(x) = x \). ### Step 3: Differentiate the numerator and denominator Using the Fundamental Theorem of Calculus, we differentiate \( f(x) \): \[ f'(x) = e^{\sin^2(x+y)} \cdot \frac{d}{dx}(x+y) = e^{\sin^2(x+y)} \cdot 1 = e^{\sin^2(x+y)}. \] The derivative of the denominator \( g(x) \) is simply: \[ g'(x) = 1. \] ### Step 4: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} e^{\sin^2(x+y)}. \] ### Step 5: Evaluate the limit As \( x \to 0 \), we have: \[ \sin^2(x+y) \to \sin^2(y). \] Thus, \[ \lim_{x \to 0} e^{\sin^2(x+y)} = e^{\sin^2(y)}. \] ### Final Result Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_{y}^{0} e^{\sin^2 t} \, dt - \int_{x+y}^{0} e^{\sin^2 t} \, dt \right) = e^{\sin^2(y)}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_ (x rarr0x rarr0) (1) / (x) [int_ (y rarr a) e ^ (sin ^ (2) t) dt-int_ (x + y rarr a) e ^ (sin ^ (2) t) dt] is

The value of lim_( x to 0) (int_(0)^(x) sin t^(2) dt) / x^(2) is

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

The value of lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x) is equal to:

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to