Home
Class 12
MATHS
lim(x to 9)[log(2) log(3)x]^(1/(x-9)=...

`lim_(x to 9)[log_(2) log_(3)x]^(1/(x-9)`=

A

1

B

0

C

`infty`

D

`-infty`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 9} \left[ \log_2 (\log_3 x) \right]^{\frac{1}{x-9}} \), we will follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 9 \) into the expression to see what form we get: \[ \log_3 9 = \log_3 (3^2) = 2 \quad \text{(since } 9 = 3^2\text{)} \] Then, \[ \log_2 (\log_3 9) = \log_2 2 = 1 \] Thus, we have: \[ \left[ \log_2 (\log_3 x) \right]^{\frac{1}{x-9}} \to 1^{\frac{1}{0}} \text{ as } x \to 9 \] This is an indeterminate form of type \( 1^\infty \). ### Step 2: Apply the Exponential Limit We can rewrite the limit using the exponential function: \[ L = \lim_{x \to 9} \left[ \log_2 (\log_3 x) \right]^{\frac{1}{x-9}} = e^{\lim_{x \to 9} \left( \log_2 (\log_3 x) - 1 \right) \cdot \frac{1}{x-9}} \] ### Step 3: Simplify the Limit Now we need to evaluate: \[ \lim_{x \to 9} \left( \log_2 (\log_3 x) - 1 \right) \cdot \frac{1}{x-9} \] We know that \( \log_2 (\log_3 x) \to 1 \) as \( x \to 9 \), so we can apply L'Hôpital's Rule since we have a \( 0/0 \) form. ### Step 4: Differentiate the Numerator and Denominator Let \( f(x) = \log_2 (\log_3 x) - 1 \). We need to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \log_2 (\log_3 x) \right) = \frac{1}{\log 2} \cdot \frac{1}{\log 3} \cdot \frac{1}{x} \] Thus, \[ \lim_{x \to 9} \frac{f(x)}{x-9} = \lim_{x \to 9} \frac{f'(x)}{1} = \frac{1}{\log 2 \cdot \log 3} \cdot \frac{1}{9} \] ### Step 5: Calculate the Final Limit Now we substitute \( x = 9 \): \[ \lim_{x \to 9} \frac{1}{\log 2 \cdot \log 3 \cdot 9} \] Thus, \[ L = e^{\frac{1}{9 \log 2 \cdot \log 3}} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 9} \left[ \log_2 (\log_3 x) \right]^{\frac{1}{x-9}} = e^{\frac{1}{9 \log 2 \cdot \log 3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

log_(x)(log_(9)(3^(x)-9))<1

log_(x)(9x^(2))*log_(3)^(2)(x)=4

(log_(2)(4-x))^(2)<(1)/(9)

Solve: log_(3)(log_(3)x+(1)/(2)+9^(x))=2x

If (lim)_(x->0)(log(3+x)-"log"(3-x))/(x^2-9)="k", then the value of k is equal to.......

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

lim_(x rarr1)(log_(3)3x)^(log_(x)3)=

Evaluate lim_(x rarr-1)(log x^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3)))

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =