Home
Class 12
MATHS
lim(x to pi//2) (sin x - (sin x)^(sin x)...

`lim_(x to pi//2) (sin x - (sin x)^(sin x))/(1- sin x + log sin x)`=

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{\sin x - (\sin x)^{\sin x}}{1 - \sin x + \log(\sin x)}, \] we will follow these steps: ### Step 1: Substitute \(\sin x\) with \(t\) Let \(t = \sin x\). As \(x\) approaches \(\frac{\pi}{2}\), \(t\) approaches \(1\). Therefore, we can rewrite the limit as: \[ \lim_{t \to 1} \frac{t - t^t}{1 - t + \log t}. \] ### Step 2: Evaluate the limit Substituting \(t = 1\) directly into the expression gives us: \[ \frac{1 - 1^1}{1 - 1 + \log 1} = \frac{0}{0}, \] which is an indeterminate form. We can apply L'Hôpital's Rule. ### Step 3: Differentiate the numerator and denominator Using L'Hôpital's Rule, we differentiate the numerator and denominator: 1. **Numerator**: - The derivative of \(t - t^t\) can be computed using the product and chain rule. - Let \(y = t^t\), then \(\log y = t \log t\). - Differentiating both sides gives us: \[ \frac{1}{y} \frac{dy}{dt} = \log t + 1. \] Thus, \[ \frac{dy}{dt} = t^t (\log t + 1). \] - Therefore, the derivative of the numerator is: \[ 1 - \frac{dy}{dt} = 1 - t^t (\log t + 1). \] 2. **Denominator**: - The derivative of \(1 - t + \log t\) is: \[ -1 + \frac{1}{t}. \] ### Step 4: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{t \to 1} \frac{1 - t^t (\log t + 1)}{-1 + \frac{1}{t}}. \] ### Step 5: Substitute \(t = 1\) again Substituting \(t = 1\) into the new limit gives us: - For the numerator: \[ 1 - 1^1(0 + 1) = 1 - 1 = 0. \] - For the denominator: \[ -1 + 1 = 0. \] This is again an indeterminate form, so we apply L'Hôpital's Rule a second time. ### Step 6: Differentiate again 1. **Numerator**: - Differentiate \(1 - t^t (\log t + 1)\): - The derivative is: \[ -\left( t^t (\log t + 1) + t^t \cdot \frac{1}{t} \cdot (1 + \log t) \right). \] 2. **Denominator**: - The derivative of \(-1 + \frac{1}{t}\) is: \[ -\frac{1}{t^2}. \] ### Step 7: Apply L'Hôpital's Rule again Now we can apply L'Hôpital's Rule again: \[ \lim_{t \to 1} \frac{-\left( t^t (\log t + 1) + t^t \cdot \frac{1}{t} \cdot (1 + \log t) \right)}{-\frac{1}{t^2}}. \] ### Step 8: Substitute \(t = 1\) again Substituting \(t = 1\): - The numerator becomes: \[ -\left(1(0 + 1) + 1 \cdot (1)(1 + 0)\right) = -2. \] - The denominator becomes: \[ -(-1) = 1. \] Thus, the limit evaluates to: \[ \lim_{t \to 1} \frac{-2}{1} = 2. \] ### Final Answer Therefore, the limit is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr pi) (sin3x) / (sin2x)

lim_ (x rarr pi / 2) ((sin x) ^ (2sin x) -1) / (sin x-1)

lim_(x to pi)(sin 3x)/(sin 2x) is equal to

lim_ (x rarr pi) ([sin x] + x) is

lim_(x rarr0)(a^(sin x)-1)/(sin x)

int_(0)^(pi//2) (sin x cos x) / ((1 + 2 sin x ) ( 1+ sin x))dx =