Home
Class 12
MATHS
lim(x to 0)(2^(x)-1)/((1+x)^(1//2)-1)=...

`lim_(x to 0)(2^(x)-1)/((1+x)^(1//2)-1)=`

A

log 2

B

2 log 2

C

`1/2 log 2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1}, \] we first observe that substituting \(x = 0\) directly into the expression results in the indeterminate form \(\frac{0}{0}\). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Differentiate the Numerator and Denominator 1. **Numerator**: The numerator is \(2^x - 1\). The derivative of \(2^x\) is given by the formula \(2^x \ln(2)\). Therefore, the derivative of the numerator is: \[ \frac{d}{dx}(2^x - 1) = 2^x \ln(2). \] 2. **Denominator**: The denominator is \(\sqrt{1+x} - 1\). The derivative of \(\sqrt{1+x}\) is \(\frac{1}{2\sqrt{1+x}}\). Therefore, the derivative of the denominator is: \[ \frac{d}{dx}(\sqrt{1+x} - 1) = \frac{1}{2\sqrt{1+x}}. \] ### Step 2: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = \lim_{x \to 0} \frac{2^x \ln(2)}{\frac{1}{2\sqrt{1+x}}}. \] ### Step 3: Simplify the Expression This simplifies to: \[ \lim_{x \to 0} \frac{2^x \ln(2) \cdot 2\sqrt{1+x}}{1}. \] ### Step 4: Evaluate the Limit Now we can substitute \(x = 0\): - \(2^0 = 1\), - \(\sqrt{1+0} = 1\). Thus, we have: \[ \lim_{x \to 0} 2^x \ln(2) \cdot 2\sqrt{1+x} = 1 \cdot \ln(2) \cdot 2 \cdot 1 = 2 \ln(2). \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = 2 \ln(2). \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(x)-1)/((1+x)^(1/2)-1)

Evaluate: lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

lim_(x rarr0)(2^(2x)-1)/(x)

Evaluate ("Lim")_(x->0)(2^x-1)/((1+x)^(1//2)-1) using Lhospitals Rule

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

lim_(x rarr0)((1+x)^(6)-1)/((1+x)^(2)-1)

lim_(x rarr0)((1+x)^(6)-1)/((1+x)^(2)-1)

lim_(x rarr0)((1+x)^(9)-1)/((1+x)^(6)-1)=(3)/(2)