Home
Class 12
MATHS
lim(x to 0) (a^(x)-b^(x))/x=...

`lim_(x to 0) (a^(x)-b^(x))/x=`

A

log (ab)

B

`log a/b`

C

`log b/a`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{a^x - b^x}{x} \), we can follow these steps: ### Step 1: Identify the form of the limit When we substitute \( x = 0 \) directly into the expression, we get: \[ \frac{a^0 - b^0}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule L'Hôpital's Rule states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator: \[ \lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \frac{(a^x \ln a) - (b^x \ln b)}{1} \] ### Step 3: Evaluate the new limit Now we need to evaluate: \[ \lim_{x \to 0} \left( a^x \ln a - b^x \ln b \right) \] As \( x \to 0 \), \( a^x \to 1 \) and \( b^x \to 1 \). Thus, we have: \[ \lim_{x \to 0} (a^x \ln a - b^x \ln b) = 1 \cdot \ln a - 1 \cdot \ln b = \ln a - \ln b \] ### Step 4: Simplify the expression Using the properties of logarithms, we can rewrite: \[ \ln a - \ln b = \ln \left( \frac{a}{b} \right) \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{a^x - b^x}{x} = \ln \left( \frac{a}{b} \right) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

What is lim_(xto0) (a^(x)-b^(x))/(x) equal to?

What is lim_(xto0)(a^(x)-b^(x))/(x) ?

lim_(x rarr0)(a^(x)-b^(x))/(x)=log_(e)((a)/(b))

If a and b are chosen randomly from the set consisting of number 1, 2, 3, 4, 5, 6 with replacement. Then the probability that lim_(x to 0)[(a^(x)+b^(x))//2]^(2//x)=6 is

lim_(x rarr 0) (a^x-b^x)/x=

Evaluate lim_(x rarr0)((a^(x)-b^(x))/(x))

Evaluate : lim_(x to 0)(a^(x)-1)/(b^(x)-1) .