Home
Class 12
MATHS
"lt"(x to 0) (1-3^(x) - 4^(x) + 12^(x))/...

`"lt"_(x to 0) (1-3^(x) - 4^(x) + 12^(x))/(sqrt(2 cos x+7)-3)` is:

A

2 log 4. log 3

B

`-6 log 4. log 3`

C

3 log 4. log 3

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1 - 3^x - 4^x + 12^x}{\sqrt{2 \cos x + 7} - 3} \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \(x = 0\) into the expression: \[ 1 - 3^0 - 4^0 + 12^0 = 1 - 1 - 1 + 1 = 0 \] For the denominator: \[ \sqrt{2 \cos(0) + 7} - 3 = \sqrt{2 \cdot 1 + 7} - 3 = \sqrt{9} - 3 = 3 - 3 = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Simplify the numerator We can rewrite the numerator as follows: \[ 1 - 3^x - 4^x + 12^x = (1 - 3^x) + (12^x - 4^x) \] ### Step 3: Use Taylor expansion Using the Taylor series expansion around \(x = 0\): - \(3^x \approx 1 + x \ln(3)\) - \(4^x \approx 1 + x \ln(4)\) - \(12^x \approx 1 + x \ln(12)\) Substituting these approximations into the numerator: \[ 1 - (1 + x \ln(3)) - (1 + x \ln(4)) + (1 + x \ln(12)) \] This simplifies to: \[ 1 - 1 - x \ln(3) - 1 - x \ln(4) + 1 + x \ln(12) = -x \ln(3) - x \ln(4) + x \ln(12) \] Combining the terms gives: \[ x (\ln(12) - \ln(3) - \ln(4)) = x \ln\left(\frac{12}{3 \cdot 4}\right) = x \ln(1) = 0 \] ### Step 4: Simplify the denominator Now for the denominator: \[ \sqrt{2 \cos x + 7} - 3 \] Using the Taylor expansion for \(\cos x\): \[ \cos x \approx 1 - \frac{x^2}{2} \] Thus, \[ 2 \cos x + 7 \approx 2(1 - \frac{x^2}{2}) + 7 = 9 - x^2 \] So, \[ \sqrt{9 - x^2} - 3 \approx \frac{(9 - x^2) - 9}{\sqrt{9 - x^2} + 3} = \frac{-x^2}{\sqrt{9 - x^2} + 3} \] As \(x \to 0\), \(\sqrt{9 - x^2} + 3 \to 6\). Therefore, the denominator simplifies to: \[ \frac{-x^2}{6} \] ### Step 5: Combine results Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{-x (\ln(3) + \ln(4) - \ln(12))}{\frac{-x^2}{6}} = \lim_{x \to 0} \frac{6(\ln(12) - \ln(3) - \ln(4))}{x} \] As \(x \to 0\), we can evaluate this limit: \[ = 6(\ln(12) - \ln(3) - \ln(4)) = 6 \cdot 0 = 0 \] ### Final Result Thus, the limit is: \[ \boxed{-6 \ln(3) \ln(4)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr0)((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cos x+7)-3))

Lt_(x rarr0)((15)^(x)-5^(x)-3^(x)+1)/(1-cos4x)=

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

(2x + 3) / (x ^ (2) + x-12) <= (1) / (2)

If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -1)^(7))/(28) + ... where 0 lt x lt 2 , then f'(x) is equal to

Lt_(x rarr0)(sqrt(4+x)-(8+3x)^((1)/(3)))/(x)=