Home
Class 12
MATHS
"lt"(x to 0)(8^(x) -4^(x) -2^(x) +1^(x))...

`"lt"_(x to 0)(8^(x) -4^(x) -2^(x) +1^(x))/x^(2)`=

A

2 log 2

B

`2(log 2)(2)`

C

log 2

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1^x}{x^2}\), we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \(x = 0\) into the expression: \[ 8^0 - 4^0 - 2^0 + 1^0 = 1 - 1 - 1 + 1 = 0 \] The denominator is: \[ 0^2 = 0 \] Thus, we have the indeterminate form \(\frac{0}{0}\). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. The numerator is \(8^x - 4^x - 2^x + 1^x\) and the denominator is \(x^2\). ### Step 3: Differentiate the numerator and denominator Differentiating the numerator: \[ \frac{d}{dx}(8^x) = 8^x \ln(8), \quad \frac{d}{dx}(4^x) = 4^x \ln(4), \quad \frac{d}{dx}(2^x) = 2^x \ln(2), \quad \frac{d}{dx}(1^x) = 0 \] Thus, the derivative of the numerator is: \[ 8^x \ln(8) - 4^x \ln(4) - 2^x \ln(2) \] The derivative of the denominator is: \[ \frac{d}{dx}(x^2) = 2x \] ### Step 4: Rewrite the limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{8^x \ln(8) - 4^x \ln(4) - 2^x \ln(2)}{2x} \] ### Step 5: Substitute \(x = 0\) again Substituting \(x = 0\) into the new limit: \[ 8^0 \ln(8) - 4^0 \ln(4) - 2^0 \ln(2) = \ln(8) - \ln(4) - \ln(2) = \ln\left(\frac{8}{4 \cdot 2}\right) = \ln(1) = 0 \] The denominator becomes \(2 \cdot 0 = 0\) again, so we apply L'Hôpital's Rule a second time. ### Step 6: Differentiate again We differentiate the numerator again: \[ \frac{d}{dx}(8^x \ln(8)) = 8^x \ln(8)^2, \quad \frac{d}{dx}(4^x \ln(4)) = 4^x \ln(4)^2, \quad \frac{d}{dx}(2^x \ln(2)) = 2^x \ln(2)^2 \] Thus, the new numerator is: \[ 8^x \ln(8)^2 - 4^x \ln(4)^2 - 2^x \ln(2)^2 \] The denominator's derivative is: \[ \frac{d}{dx}(2x) = 2 \] ### Step 7: Rewrite the limit again Now we rewrite the limit: \[ \lim_{x \to 0} \frac{8^x \ln(8)^2 - 4^x \ln(4)^2 - 2^x \ln(2)^2}{2} \] ### Step 8: Substitute \(x = 0\) one last time Substituting \(x = 0\): \[ 8^0 \ln(8)^2 - 4^0 \ln(4)^2 - 2^0 \ln(2)^2 = \ln(8)^2 - \ln(4)^2 - \ln(2)^2 \] Using the logarithmic identities: \[ \ln(8) = 3\ln(2), \quad \ln(4) = 2\ln(2) \] Thus: \[ \ln(8)^2 = (3\ln(2))^2 = 9\ln(2)^2, \quad \ln(4)^2 = (2\ln(2))^2 = 4\ln(2)^2 \] So: \[ 9\ln(2)^2 - 4\ln(2)^2 - \ln(2)^2 = 4\ln(2)^2 \] Finally, we have: \[ \lim_{x \to 0} \frac{4\ln(2)^2}{2} = 2\ln(2)^2 \] ### Final Answer Thus, the limit is: \[ \boxed{2\ln(2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate "lim_(x rarr0)(8^(x)-4^(x)-2^(x)+1)/(x^(2))

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

Lt_(x rarr0)(sqrt(4+x)-(8+3x)^((1)/(3)))/(x)=

((x-1)(x+1)(x+4)(x+6))/(7x^(2)+8x+4)>0

(x + 1) / (x (x ^ (2) -2x-3)) <= 0