Home
Class 12
MATHS
"lt"(x to 0)(64^(x) -32^(x) - 16^(x) + 4...

`"lt"_(x to 0)(64^(x) -32^(x) - 16^(x) + 4^(x) + 2^(x) -1)/([sqrt(15 + cos x) - 4]sin x)=`

A

`-96 (log 2)^(2)`

B

`48 (log 2)^(2)`

C

`(2 log 2)^(3)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{64^x - 32^x - 16^x + 4^x + 2^x - 1}{\left(\sqrt{15 + \cos x} - 4\right) \sin x} \] we will follow these steps: ### Step 1: Rewrite the Exponential Terms We can express the exponential terms using the property \(a^x = e^{x \ln a}\): \[ 64^x = e^{x \ln 64}, \quad 32^x = e^{x \ln 32}, \quad 16^x = e^{x \ln 16}, \quad 4^x = e^{x \ln 4}, \quad 2^x = e^{x \ln 2} \] ### Step 2: Simplify the Numerator As \(x \to 0\), we can use the Taylor expansion \(e^u \approx 1 + u\) for small \(u\): \[ 64^x \approx 1 + x \ln 64, \quad 32^x \approx 1 + x \ln 32, \quad 16^x \approx 1 + x \ln 16, \quad 4^x \approx 1 + x \ln 4, \quad 2^x \approx 1 + x \ln 2 \] Substituting these approximations into the numerator: \[ \begin{align*} 64^x - 32^x - 16^x + 4^x + 2^x - 1 &\approx (1 + x \ln 64) - (1 + x \ln 32) - (1 + x \ln 16) + (1 + x \ln 4) + (1 + x \ln 2) - 1 \\ &= x \ln 64 - x \ln 32 - x \ln 16 + x \ln 4 + x \ln 2 \\ &= x (\ln 64 - \ln 32 - \ln 16 + \ln 4 + \ln 2) \end{align*} \] ### Step 3: Combine the Logarithms Using the properties of logarithms: \[ \ln 64 - \ln 32 - \ln 16 + \ln 4 + \ln 2 = \ln \left(\frac{64 \cdot 4 \cdot 2}{32 \cdot 16}\right) = \ln \left(\frac{512}{512}\right) = \ln(1) = 0 \] ### Step 4: Evaluate the Denominator Next, we simplify the denominator: \[ \sqrt{15 + \cos x} - 4 \] Using the Taylor expansion for \(\cos x\): \[ \cos x \approx 1 - \frac{x^2}{2} \] Thus, \[ \sqrt{15 + \cos x} \approx \sqrt{15 + 1 - \frac{x^2}{2}} = \sqrt{16 - \frac{x^2}{2}} \approx 4 - \frac{x^2}{16} \] So, \[ \sqrt{15 + \cos x} - 4 \approx -\frac{x^2}{16} \] ### Step 5: Combine the Results Now substituting back into the limit: \[ \lim_{x \to 0} \frac{x (\ln 64 - \ln 32 - \ln 16 + \ln 4 + \ln 2)}{\left(-\frac{x^2}{16}\right) \sin x} \] Since \(\sin x \approx x\) as \(x \to 0\): \[ \lim_{x \to 0} \frac{x \cdot 0}{-\frac{x^2}{16} \cdot x} = \lim_{x \to 0} \frac{0}{-\frac{x^3}{16}} = 0 \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Lt_(x rarr0)((15)^(x)-5^(x)-3^(x)+1)/(1-cos4x)=

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

If (sin^(2) 2x + 4 sin^(4) x - 4 sin^(2)x * cos^(2) x )/(4- sin^(2) 2x - 4 sin^(2) x )=(1)/(9) and 0 lt x lt pi . Then the value of x is :

Prove that (i) "cos " ((pi)/(3) +x) =(1)/(2) ( " cos " x - sqrt(3) sin x) (ii) " sin " ((pi)/(4) + x) + " sin " ((pi)/(4)-x) =sqrt(2) " cos " x (iii) (1)/(sqrt(2)) " cos ((pi)/(4) + x) = (1)/(2) " (cos x - sin x) " (iv) " cos x + cos " ((2pi)/(3) +x) + " cos " ((2pi)/(3)-x) =0

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

int(cos^(4)x-sin^(4)x)/(sqrt(1+cos4x))dx(cos2x>0)