Home
Class 12
MATHS
"lt"(x to 0) (8^(x) -4^(x) -2^(x)+1)/(sq...

`"lt"_(x to 0) (8^(x) -4^(x) -2^(x)+1)/(sqrt(2)- sqrt(1 + cos x))`=

A

`4sqrt(2) log 2`

B

`8sqrt(2) log 2`

C

`8sqrt(2) (log 2)^(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, \] we will follow these steps: ### Step 1: Analyze the limit First, we substitute \(x = 0\) into the expression. \[ 8^0 - 4^0 - 2^0 + 1 = 1 - 1 - 1 + 1 = 0, \] and for the denominator: \[ \sqrt{2} - \sqrt{1 + \cos(0)} = \sqrt{2} - \sqrt{2} = 0. \] This gives us the indeterminate form \(\frac{0}{0}\). ### Step 2: Simplify the numerator We can rewrite the numerator \(8^x - 4^x - 2^x + 1\) using the fact that \(8^x = (2^3)^x = (2^x)^3\), \(4^x = (2^2)^x = (2^x)^2\), and \(2^x = (2^x)^1\): \[ = (2^x)^3 - (2^x)^2 - (2^x) + 1. \] Let \(y = 2^x\). Then the expression becomes: \[ y^3 - y^2 - y + 1. \] ### Step 3: Factor the numerator We can factor \(y^3 - y^2 - y + 1\): \[ y^3 - y^2 - y + 1 = (y - 1)(y^2 + 1). \] Thus, we have: \[ 8^x - 4^x - 2^x + 1 = (2^x - 1)(2^{2x} + 1). \] ### Step 4: Rewrite the limit Now, substituting back into the limit gives: \[ \lim_{x \to 0} \frac{(2^x - 1)(2^{2x} + 1)}{\sqrt{2} - \sqrt{1 + \cos x}}. \] ### Step 5: Simplify the denominator For the denominator, we can use the identity \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\): \[ \sqrt{2} - \sqrt{1 + \cos x} = \sqrt{2} - \sqrt{2\cos^2\left(\frac{x}{2}\right)} = \sqrt{2} - \sqrt{2}\cos\left(\frac{x}{2}\right) = \sqrt{2}(1 - \cos\left(\frac{x}{2}\right)). \] Using the identity \(1 - \cos\left(\frac{x}{2}\right) = 2\sin^2\left(\frac{x}{4}\right)\): \[ \sqrt{2}(1 - \cos\left(\frac{x}{2}\right)) = \sqrt{2}(2\sin^2\left(\frac{x}{4}\right)). \] ### Step 6: Substitute back into the limit Now we have: \[ \lim_{x \to 0} \frac{(2^x - 1)(2^{2x} + 1)}{\sqrt{2} \cdot 2\sin^2\left(\frac{x}{4}\right)}. \] ### Step 7: Evaluate the limit As \(x \to 0\), \(2^x - 1 \sim \ln(2) \cdot x\) and \(2^{2x} + 1 \to 2 + 1 = 3\). Thus: \[ \lim_{x \to 0} \frac{(\ln(2) \cdot x)(3)}{\sqrt{2} \cdot 2\sin^2\left(\frac{x}{4}\right)}. \] Using \(\sin\left(\frac{x}{4}\right) \sim \frac{x}{4}\): \[ \sin^2\left(\frac{x}{4}\right) \sim \left(\frac{x}{4}\right)^2 = \frac{x^2}{16}. \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{3\ln(2) \cdot x}{\sqrt{2} \cdot 2 \cdot \frac{x^2}{16}} = \lim_{x \to 0} \frac{3\ln(2) \cdot 16}{2\sqrt{2} \cdot x} = \frac{48\ln(2)}{2\sqrt{2}} = 24\frac{\ln(2)}{\sqrt{2}}. \] ### Final Answer The limit evaluates to: \[ \lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = 8\sqrt{2} \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

If pi

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

sqrt(4-sqrt(1-x))-sqrt(2-x)>0