Home
Class 12
MATHS
The value of "lt"(x to 1)(log(2)2x)^(log...

The value of `"lt"_(x to 1)(log_(2)2x)^(log_(x)5)` is:

A

`log_(2)5`

B

`5/2`

C

`e^(log_(2)5)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} (\log_2 (2x))^{\log_x 5} \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions We start by rewriting the logarithmic expressions using properties of logarithms. We know that: \[ \log_x 5 = \frac{\log_2 5}{\log_2 x} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} (\log_2 (2x))^{\frac{\log_2 5}{\log_2 x}} \] ### Step 2: Simplify the logarithm Next, we simplify \( \log_2 (2x) \): \[ \log_2 (2x) = \log_2 2 + \log_2 x = 1 + \log_2 x \] So the limit now looks like: \[ \lim_{x \to 1} (1 + \log_2 x)^{\frac{\log_2 5}{\log_2 x}} \] ### Step 3: Identify the form As \( x \to 1 \), \( \log_2 x \to 0 \). Therefore, we have: \[ 1 + \log_2 x \to 1 \quad \text{and} \quad \frac{\log_2 5}{\log_2 x} \to \infty \] This gives us the indeterminate form \( 1^\infty \). ### Step 4: Use the exponential limit property For limits of the form \( 1^\infty \), we can use the property: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) (f(x) - 1)} \] In our case, let: \[ f(x) = 1 + \log_2 x \quad \text{and} \quad g(x) = \frac{\log_2 5}{\log_2 x} \] Thus, we need to evaluate: \[ \lim_{x \to 1} \frac{\log_2 5}{\log_2 x} \cdot \log_2 x \] ### Step 5: Simplify the limit This simplifies to: \[ \lim_{x \to 1} \log_2 5 \cdot \frac{\log_2 x}{\log_2 x} = \lim_{x \to 1} \log_2 5 = \log_2 5 \] ### Step 6: Compute the final limit Now we can compute the limit: \[ \lim_{x \to 1} (1 + \log_2 x)^{\frac{\log_2 5}{\log_2 x}} = e^{\log_2 5} = 5 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

The value of x satisfying |x-1|^(log_(3)x^(2)-2log_(x)9)=(x-1)^(7) is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

log_(2)|x| lt 3

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]