Home
Class 12
MATHS
lim(x to 0) {tan (pi/4 +x)}^(1//x)=...

`lim_(x to 0) {tan (pi/4 +x)}^(1//x)`=

A

e

B

`e^(2)`

C

`sqrt(e)`

D

`1//sqrt(e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit: \[ L = \lim_{x \to 0} \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} \] ### Step 2: Use the tangent addition formula Using the tangent addition formula, we have: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan(x)}{1 - \tan\left(\frac{\pi}{4}\right) \tan(x)} \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), this simplifies to: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan(x)}{1 - \tan(x)} \] ### Step 3: Substitute \(\tan(x)\) with its limit As \( x \to 0 \), we can use the approximation \( \tan(x) \approx x \): \[ \tan\left(\frac{\pi}{4} + x\right) \approx \frac{1 + x}{1 - x} \] ### Step 4: Simplify the expression Now we can simplify: \[ \tan\left(\frac{\pi}{4} + x\right) \approx \frac{1 + x}{1 - x} = \frac{(1 + x)(1 + x)}{(1 - x)(1 + x)} = \frac{1 + 2x + x^2}{1 - x^2} \] As \( x \to 0 \), this approaches \( 1 + 2x \). ### Step 5: Substitute back into the limit Now substituting back into our limit: \[ L = \lim_{x \to 0} \left(1 + 2x\right)^{\frac{1}{x}} \] ### Step 6: Recognize the indeterminate form This limit is of the form \( 1^{\infty} \), so we can use the exponential limit property: \[ L = e^{\lim_{x \to 0} \frac{(1 + 2x - 1)}{x}} = e^{\lim_{x \to 0} \frac{2x}{x}} = e^{\lim_{x \to 0} 2} = e^2 \] ### Final Answer Thus, the limit is: \[ L = e^2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

lim_(x rarr 0)tan(pi/4+x)^(1/x)=

Find lim_(x rarr0){tan((pi)/(4)+x)}^(1/x)

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

(lim)_(x->0)[tan(pi/4+x)]^(1/x)

lim_ (x rarr0) {tan ((pi) / (4) + x)} ^ ((1) / (x))

lim_(x to 1) (1 - x) tan ((pi x)/2) =… .

Statement-1: lim_(x to 1) "sin" pi/4 ((x|x|-1)/(|x|-1)) exists Statement-2: lim_( xto 1) "tan" pi/4 ((x|x|-1)/(|x|-1)) exists