Home
Class 12
MATHS
If a lim(x to 1) x^(1//(1-x)) + b =e^(-1...

If a `lim_(x to 1) x^(1//(1-x)) + b =e^(-1)` where `a ge 1` and `b ge 0` then (a,b) is equal to:

A

`(1, e^(-1))`

B

`(2, e^(-1))`

C

(1,0)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit and find the values of \(a\) and \(b\) such that: \[ \lim_{x \to 1} a \cdot x^{\frac{1}{1-x}} + b = e^{-1} \] ### Step 1: Evaluate the limit We start by evaluating the limit \( \lim_{x \to 1} x^{\frac{1}{1-x}} \). As \(x\) approaches 1, the expression \(x^{\frac{1}{1-x}}\) takes the form \(1^{\infty}\), which is an indeterminate form. We can use the following limit property: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1) \cdot g(x)} \] Here, let \(f(x) = x\) and \(g(x) = \frac{1}{1-x}\). Thus, we can rewrite the limit as: \[ \lim_{x \to 1} x^{\frac{1}{1-x}} = e^{\lim_{x \to 1} (x - 1) \cdot \frac{1}{1-x}} \] ### Step 2: Simplify the limit Now, we simplify the limit: \[ \lim_{x \to 1} (x - 1) \cdot \frac{1}{1-x} = \lim_{x \to 1} \frac{x - 1}{1 - x} = \lim_{x \to 1} -1 = -1 \] Thus, we have: \[ \lim_{x \to 1} x^{\frac{1}{1-x}} = e^{-1} \] ### Step 3: Substitute back into the equation Now we substitute this result back into our original equation: \[ \lim_{x \to 1} a \cdot x^{\frac{1}{1-x}} + b = a \cdot e^{-1} + b \] Setting this equal to \(e^{-1}\): \[ a \cdot e^{-1} + b = e^{-1} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ a \cdot e^{-1} + b = e^{-1} \implies a \cdot e^{-1} = e^{-1} - b \] ### Step 5: Solve for \(a\) and \(b\) From the equation \(a \cdot e^{-1} = e^{-1} - b\), we can express \(b\): \[ b = e^{-1} - a \cdot e^{-1} = e^{-1}(1 - a) \] ### Step 6: Apply the constraints Given that \(a \geq 1\) and \(b \geq 0\): 1. Since \(b \geq 0\), we have: \[ e^{-1}(1 - a) \geq 0 \implies 1 - a \geq 0 \implies a \leq 1 \] 2. Combining \(a \geq 1\) and \(a \leq 1\) gives us \(a = 1\). ### Step 7: Find \(b\) Substituting \(a = 1\) back into the equation for \(b\): \[ b = e^{-1}(1 - 1) = 0 \] ### Final Result Thus, we find: \[ (a, b) = (1, 0) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If a .lim_(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

If lim_(x to 0) (1+ax)^(b//x)=e^4 , where a and b are natural numbers then

if lim_(x rarr0)(1+ax)^((b)/(x))=e^(2), where a and b are natural numbers,then

Evaluate : lim_(x to 0)(a^(x)-1)/(b^(x)-1) .

If lim_(x to 1) (x^(2) - ax + b)/(x-1)=5," then " a + b is equal to

lim_(x to 0) (1+ax)^(b/x) =e^(2) , " where" a, b in N such that a+ b = 3 , then the value of (a,b) is

Cosider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such that f(x)ge0 then D is equal to