Home
Class 12
MATHS
If "lt"(x to infty)[1 +a/x + b/x^(2)]^(2...

If `"lt"_(x to infty)[1 +a/x + b/x^(2)]^(2x)= e^(2)`, then (a,b) is:

A

(2,1)

B

(1,2)

C

[1, any real constant]

D

(1,1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given in the question: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2 \] ### Step 1: Rewrite the limit expression As \( x \to \infty \), both \( \frac{a}{x} \) and \( \frac{b}{x^2} \) approach 0. Thus, we can rewrite the limit expression: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} \] ### Step 2: Apply the logarithm To simplify the limit, we can take the natural logarithm of both sides: \[ \ln\left(\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x}\right) = \ln(e^2) = 2 \] Using properties of logarithms, we can move the limit inside: \[ \lim_{x \to \infty} 2x \ln\left(1 + \frac{a}{x} + \frac{b}{x^2}\right) = 2 \] ### Step 3: Expand the logarithm using Taylor series For small values of \( y \), \( \ln(1+y) \approx y \). Thus, we can approximate: \[ \ln\left(1 + \frac{a}{x} + \frac{b}{x^2}\right) \approx \frac{a}{x} + \frac{b}{x^2} \] ### Step 4: Substitute the approximation into the limit Substituting this approximation into our limit gives: \[ \lim_{x \to \infty} 2x \left(\frac{a}{x} + \frac{b}{x^2}\right) = \lim_{x \to \infty} \left(2a + \frac{2b}{x}\right) \] As \( x \to \infty \), the term \( \frac{2b}{x} \) approaches 0: \[ \lim_{x \to \infty} \left(2a + 0\right) = 2a \] ### Step 5: Set the limit equal to 2 Now we set this equal to the right-hand side of our earlier equation: \[ 2a = 2 \] ### Step 6: Solve for \( a \) Dividing both sides by 2 gives: \[ a = 1 \] ### Step 7: Determine \( b \) Since the term \( \frac{2b}{x} \) approaches 0, \( b \) can be any real constant. Therefore, \( b \) is not restricted and can take any value. ### Final Answer Thus, the values of \( (a, b) \) are: \[ (a, b) = (1, \text{any real constant}) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr oo)(1+(a)/(x)+(b)/(x^(2)))^(2x)=e^(2) then the values of a and b,are