Home
Class 12
MATHS
The value of lim(x to 0) [cos x + a sin ...

The value of `lim_(x to 0) [cos x + a sin bx]^(1//x)` is:

A

1

B

ab

C

`e^(ab)`

D

`e^(b//a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} [\cos x + a \sin(bx)]^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we evaluate the expression inside the limit as \( x \) approaches 0: \[ \cos(0) + a \sin(0) = 1 + 0 = 1. \] Thus, we have: \[ \lim_{x \to 0} [\cos x + a \sin(bx)]^{\frac{1}{x}} = 1^{\frac{1}{0}}. \] This is an indeterminate form of type \( 1^{\infty} \). ### Step 2: Use the exponential limit property To resolve the indeterminate form, we can use the property: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) \cdot (f(x) - 1)}, \] where \( f(x) = \cos x + a \sin(bx) \) and \( g(x) = \frac{1}{x} \). ### Step 3: Set up the limit We rewrite the limit as: \[ \lim_{x \to 0} [\cos x + a \sin(bx)]^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{1}{x} \left( \cos x + a \sin(bx) - 1 \right)}. \] ### Step 4: Simplify the expression inside the limit Now, we need to evaluate: \[ \lim_{x \to 0} \frac{\cos x + a \sin(bx) - 1}{x}. \] Using Taylor series expansions around \( x = 0 \): - \( \cos x \approx 1 - \frac{x^2}{2} \) - \( \sin(bx) \approx bx \) Thus, \[ \cos x + a \sin(bx) \approx \left(1 - \frac{x^2}{2}\right) + a(bx) = 1 + abx - \frac{x^2}{2}. \] So, \[ \cos x + a \sin(bx) - 1 \approx abx - \frac{x^2}{2}. \] ### Step 5: Substitute back into the limit Now, we substitute back: \[ \lim_{x \to 0} \frac{abx - \frac{x^2}{2}}{x} = \lim_{x \to 0} \left(ab - \frac{x}{2}\right). \] As \( x \to 0 \), this limit approaches \( ab \). ### Step 6: Final limit evaluation Thus, we have: \[ \lim_{x \to 0} [\cos x + a \sin(bx)]^{\frac{1}{x}} = e^{ab}. \] ### Conclusion The final result is: \[ \lim_{x \to 0} [\cos x + a \sin(bx)]^{\frac{1}{x}} = e^{ab}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos x+a sin bx)^((1)/(x))

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

lim_(x to 0) (sin x + cos 3x)^(2//x) =

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

The value of lim_( x to 0) (( x)/( 8 sqrt( 1 - sin x) - 8 sqrt( 1 + sin x))) is equal to :

lim_(x rarr0)(cos x+a sin bx)^((1)/(x)) is equal to

Calculate the value of lim_(x rarr0)(x cos x-sin x)/(x^(2)sin x)

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to