Home
Class 12
MATHS
lim(x to 0)((tan x)/x)^(1//x^(2))=...

`lim_(x to 0)((tan x)/x)^(1//x^(2))`=

A

`a^(2)`

B

e

C

`sqrt(e)`

D

`e^(1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} \), we can follow these steps: ### Step 1: Identify the limit form First, we recognize that as \( x \to 0 \), \( \tan x \) approaches \( x \). Therefore, we can rewrite the limit: \[ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} \to \left( \frac{0}{0} \right)^{\infty} \] This is an indeterminate form of type \( 1^\infty \). ### Step 2: Rewrite using the exponential function We can use the property of limits that allows us to express this limit in terms of the exponential function: \[ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{1}{x^2} \left( \frac{\tan x}{x} - 1 \right)} \] ### Step 3: Simplify the expression inside the limit Next, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{1}{x^2} \left( \frac{\tan x}{x} - 1 \right) \] Using the Taylor series expansion for \( \tan x \), we have: \[ \tan x = x + \frac{x^3}{3} + O(x^5) \] Thus, \[ \frac{\tan x}{x} = 1 + \frac{x^2}{3} + O(x^4) \] This implies: \[ \frac{\tan x}{x} - 1 = \frac{x^2}{3} + O(x^4) \] ### Step 4: Substitute back into the limit Now substituting back into our limit: \[ \lim_{x \to 0} \frac{1}{x^2} \left( \frac{\tan x}{x} - 1 \right) = \lim_{x \to 0} \frac{1}{x^2} \left( \frac{x^2}{3} + O(x^4) \right) = \lim_{x \to 0} \left( \frac{1}{3} + O(x^2) \right) = \frac{1}{3} \] ### Step 5: Final limit calculation Now we can substitute this result back into the exponential: \[ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = e^{\frac{1}{3}} \] ### Conclusion Thus, the final answer is: \[ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = e^{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((tan x)/(x))^(1/x)

lim_(x rarr0)((tan x)/(x))^((1)/(x^(2)))

Let f(x,y)=sin(2x-y)cos y+cos(2x-y)sin y for all x,y in R. The value of lim_(x rarr0)(1+tan x-x)^((1)/(x^(2)f(x,y))) is equal to

lim_(x to 0) (2x)/(tan3x)=?

lim_(x rarr0)(tan x-x)/(x^(2)tan x)

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

solve lim_(x rarr0)((e^(x)-1)tan x)/(x^(2))

Find lim_( x to 0) { tan (pi/4 + x)}^(1//x) .

lim_(x rarr0)(tan x-x)/(x^(3))