Home
Class 12
MATHS
("limit")(x to a) (x^(m) -a^(m))/(x^(n)-...

`("limit")_(x to a) (x^(m) -a^(m))/(x^(n)-a^(n))` is:

A

`m/n a^(m-n)`

B

`n/m a^(n-m)`

C

`mna^(mn)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}\), we will follow these steps: ### Step 1: Identify the form of the limit When we substitute \(x = a\) directly into the expression, we get: \[ \frac{a^m - a^m}{a^n - a^n} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule L'Hôpital's Rule states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator. The numerator is \(x^m - a^m\) and the denominator is \(x^n - a^n\). Taking the derivatives: - Derivative of the numerator: \[ \frac{d}{dx}(x^m - a^m) = mx^{m-1} \] - Derivative of the denominator: \[ \frac{d}{dx}(x^n - a^n) = nx^{n-1} \] ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit as: \[ \lim_{x \to a} \frac{mx^{m-1}}{nx^{n-1}} \] ### Step 4: Substitute \(x = a\) into the new limit Now, substituting \(x = a\) into the limit gives: \[ \frac{ma^{m-1}}{na^{n-1}} = \frac{m}{n} \cdot \frac{a^{m-1}}{a^{n-1}} = \frac{m}{n} \cdot a^{(m-n)} \] ### Final Result Thus, the limit is: \[ \lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \frac{m}{n} a^{m-n} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x to a) (x^(m)-a^(m))/(x^(n)-a^(n)) is equal to

(i) lim_(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim_(xrarra) ((1+x)^(1//n)-1)/(x)

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

Evaluate lim_(xrarra)((x^(m)-a^(m))/(x^(n)-a^(n))).

Evaluate: lim_(x rarr a) [(x^(n)-a^(n))/(x^(m)-a^(m))] .

If x^(m)y^(n)=(x+y)^(m+n)

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If f(x)=((x^(l))/(x^(m)))^(l+m)((x^(m))/(x^(n)))^(m+n)((x^(n))/(x^(l)))^(n+l) then f'(x)

If f(x)=((x^(l))/(x^(m)))^(l+m)((x^(m))/(x^(n)))^(m+n)((x^(n))/(x^(l)))^(n+l) then f'(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these