Home
Class 12
MATHS
"lt"(x to 1) (x^(4)-1)/(x-1) = "lt"(x to...

`"lt"_(x to 1) (x^(4)-1)/(x-1) = "lt"_(x to k) (x^(3) -k^(3))/(x^(2) -k^(2))` then k=

A

`2/3`

B

`4/3`

C

`8/3`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit equation \( \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2} \), we will follow these steps: ### Step 1: Evaluate the left-hand limit We start with the left-hand side: \[ \lim_{x \to 1} \frac{x^4 - 1}{x - 1} \] We notice that both the numerator and denominator approach 0 as \( x \to 1 \), resulting in the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: - The derivative of the numerator \( x^4 - 1 \) is \( 4x^3 \). - The derivative of the denominator \( x - 1 \) is \( 1 \). Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{4x^3}{1} \] ### Step 3: Substitute \( x = 1 \) Now we substitute \( x = 1 \): \[ 4(1)^3 = 4 \] Thus, the left-hand limit evaluates to 4. ### Step 4: Evaluate the right-hand limit Next, we evaluate the right-hand side: \[ \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2} \] Again, we see that substituting \( x = k \) results in the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 5: Apply L'Hôpital's Rule to the right-hand limit Differentiating the numerator and denominator: - The derivative of the numerator \( x^3 - k^3 \) is \( 3x^2 \). - The derivative of the denominator \( x^2 - k^2 \) is \( 2x \). Now we rewrite the limit: \[ \lim_{x \to k} \frac{3x^2}{2x} \] ### Step 6: Simplify and substitute \( x = k \) We can simplify this to: \[ \lim_{x \to k} \frac{3x}{2} \] Substituting \( x = k \): \[ \frac{3k}{2} \] ### Step 7: Set the two limits equal Now we set the two limits equal to each other: \[ 4 = \frac{3k}{2} \] ### Step 8: Solve for \( k \) To find \( k \), we multiply both sides by 2: \[ 8 = 3k \] Now divide by 3: \[ k = \frac{8}{3} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{\frac{8}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

(x^(3))/((2x-1)(x-3)(x-2))=K+(A)/(2x-1)+(B)/(x-3)+(C)/(x-2) then K=

If -1+i is a root of x^(4)+4x^(3)+5x^(2)+2x+k=0 then k=

Match the following : {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}