Home
Class 12
MATHS
lim(x to infty) ((x+2)/(x+1))^(x+3) =...

`lim_(x to infty) ((x+2)/(x+1))^(x+3)` =

A

e

B

`e^(2)`

C

`e^(4)`

D

`e^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} \] ### Step 2: Simplify the base We can simplify the base \( \frac{x+2}{x+1} \): \[ \frac{x+2}{x+1} = \frac{x(1 + \frac{2}{x})}{x(1 + \frac{1}{x})} = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \] As \( x \to \infty \), both \( \frac{2}{x} \) and \( \frac{1}{x} \) approach 0. Thus: \[ \frac{x+2}{x+1} \to \frac{1 + 0}{1 + 0} = 1 \] ### Step 3: Identify the indeterminate form Now, we have: \[ L = \lim_{x \to \infty} \left( 1 \right)^{x+3} \] This is an indeterminate form of type \( 1^\infty \). ### Step 4: Use logarithmic transformation To resolve the indeterminate form, we can take the natural logarithm: \[ \ln L = \lim_{x \to \infty} (x+3) \ln \left( \frac{x+2}{x+1} \right) \] ### Step 5: Simplify the logarithm Next, we simplify \( \ln \left( \frac{x+2}{x+1} \right) \): \[ \ln \left( \frac{x+2}{x+1} \right) = \ln(x+2) - \ln(x+1) \] Using properties of logarithms: \[ \ln(x+2) - \ln(x+1) = \ln \left( \frac{x+2}{x+1} \right) = \ln \left( 1 + \frac{1}{x+1} \right) \] For large \( x \), we can use the approximation \( \ln(1 + u) \approx u \) when \( u \) is small: \[ \ln \left( 1 + \frac{1}{x+1} \right) \approx \frac{1}{x+1} \] ### Step 6: Substitute back into the limit Now substituting back: \[ \ln L = \lim_{x \to \infty} (x+3) \cdot \frac{1}{x+1} \] This simplifies to: \[ \ln L = \lim_{x \to \infty} \frac{x+3}{x+1} \] As \( x \to \infty \), this approaches: \[ \ln L = \lim_{x \to \infty} \frac{1 + \frac{3}{x}}{1 + \frac{1}{x}} = \frac{1 + 0}{1 + 0} = 1 \] ### Step 7: Exponentiate to find L Now, we exponentiate both sides: \[ L = e^{\ln L} = e^1 = e \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} = e \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_( x to infty) ((x+6)/(x+1))^(x+4) = …… .

For x in R , lim_( x to infty) ((x -3)/(x + 2))^x is equal to

If lim_(x to infty) ((x^(2)+x+1)/(x+1)-ax -b)=4 then