Home
Class 12
MATHS
lim(x to infty)((x+3)/(x-1))^(x+3) =...

`lim_(x to infty)((x+3)/(x-1))^(x+3)` =

A

`e^(2)`

B

`e^(4)`

C

`e^(5)`

D

`e^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{x+3}\), we can follow these steps: ### Step 1: Identify the Form We start by recognizing that as \(x\) approaches infinity, the expression \(\frac{x+3}{x-1}\) approaches 1. Thus, we have an indeterminate form of type \(1^{\infty}\). ### Step 2: Rewrite the Limit To handle the indeterminate form, we can rewrite the limit using the exponential function: \[ L = \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{x+3} = e^{\lim_{x \to \infty} (x+3) \ln\left(\frac{x+3}{x-1}\right)} \] ### Step 3: Simplify the Logarithm Next, we simplify the logarithm: \[ \ln\left(\frac{x+3}{x-1}\right) = \ln(x+3) - \ln(x-1) \] Using the properties of logarithms, we can express this as: \[ \ln\left(\frac{x+3}{x-1}\right) = \ln\left(1 + \frac{4}{x-1}\right) \] For large \(x\), we can use the approximation \(\ln(1 + u) \approx u\) when \(u\) is small: \[ \ln\left(1 + \frac{4}{x-1}\right) \approx \frac{4}{x-1} \] ### Step 4: Substitute Back into the Limit Now substituting back, we have: \[ \lim_{x \to \infty} (x+3) \ln\left(\frac{x+3}{x-1}\right) \approx \lim_{x \to \infty} (x+3) \cdot \frac{4}{x-1} \] ### Step 5: Simplify the Expression This simplifies to: \[ \lim_{x \to \infty} \frac{4(x+3)}{x-1} = \lim_{x \to \infty} \frac{4x + 12}{x - 1} \] Dividing the numerator and the denominator by \(x\): \[ = \lim_{x \to \infty} \frac{4 + \frac{12}{x}}{1 - \frac{1}{x}} = \frac{4 + 0}{1 - 0} = 4 \] ### Step 6: Final Result Now substituting this back into our expression for \(L\): \[ L = e^4 \] Thus, the final answer is: \[ \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{x+3} = e^4 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_( x to infty) ((x+6)/(x+1))^(x+4) = …… .

For x in R , lim_( x to infty) ((x -3)/(x + 2))^x is equal to