Home
Class 12
MATHS
"lt"(n to infty)(x^(n) + y^(n))/(x^(n)- ...

`"lt"_(n to infty)(x^(n) + y^(n))/(x^(n)- y^(n))`, where `x gt y gt 1` is equal to:

A

0

B

1

C

`-1`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{x^n + y^n}{x^n - y^n} \] where \( x > y > 1 \), we can follow these steps: ### Step 1: Factor out \( x^n \) We start by factoring \( x^n \) from both the numerator and the denominator: \[ \frac{x^n + y^n}{x^n - y^n} = \frac{x^n(1 + \left(\frac{y}{x}\right)^n)}{x^n(1 - \left(\frac{y}{x}\right)^n)} \] ### Step 2: Simplify the expression Now we can simplify the expression: \[ = \frac{1 + \left(\frac{y}{x}\right)^n}{1 - \left(\frac{y}{x}\right)^n} \] ### Step 3: Analyze the limit as \( n \to \infty \) Since \( y < x \), we know that \( \frac{y}{x} < 1 \). As \( n \) approaches infinity, \( \left(\frac{y}{x}\right)^n \) approaches 0: \[ \lim_{n \to \infty} \left(\frac{y}{x}\right)^n = 0 \] ### Step 4: Substitute the limit into the simplified expression Now we substitute this limit back into our expression: \[ \lim_{n \to \infty} \frac{1 + \left(\frac{y}{x}\right)^n}{1 - \left(\frac{y}{x}\right)^n} = \frac{1 + 0}{1 - 0} = \frac{1}{1} = 1 \] ### Conclusion Thus, the limit is \[ \lim_{n \to \infty} \frac{x^n + y^n}{x^n - y^n} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

If x^(m)y^(n)=(x+y)^(m+n), then ((dy)/(dx))_(x=1,y=2) is equal to

If f(x)=(a-x^(n))^(1//n),"where a "gt 0" and "n in N , then fof (x) is equal to

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=