Home
Class 12
MATHS
If f(x) = ((x^(2) + 5x + 3)/(x^(2) + x+2...

If `f(x) = ((x^(2) + 5x + 3)/(x^(2) + x+2))^(x)`, then `lim_(x to infty) f(x)` is:

A

`e^(4)`

B

`e^(3)`

C

`e^(2)`

D

`2^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x \) as \( x \) approaches infinity, we will follow these steps: ### Step-by-step Solution: 1. **Rewrite the Function**: \[ f(x) = \left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x \] 2. **Divide Numerator and Denominator by \( x^2 \)**: \[ f(x) = \left( \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} \right)^x \] 3. **Take the Limit Inside the Exponent**: As \( x \to \infty \), the terms \( \frac{5}{x} \), \( \frac{3}{x^2} \), \( \frac{1}{x} \), and \( \frac{2}{x^2} \) approach 0. Thus, we have: \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( \frac{1 + 0 + 0}{1 + 0 + 0} \right)^x = 1^x \] 4. **Indeterminate Form**: Since \( 1^x \) is an indeterminate form, we can use the logarithm to evaluate the limit: \[ \ln(f(x)) = x \cdot \ln\left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right) \] 5. **Evaluate the Logarithm**: We can rewrite the logarithm: \[ \ln\left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right) = \ln(x^2 + 5x + 3) - \ln(x^2 + x + 2) \] 6. **Apply L'Hôpital's Rule**: As \( x \to \infty \), both \( \ln(x^2 + 5x + 3) \) and \( \ln(x^2 + x + 2) \) approach infinity. We can apply L'Hôpital's Rule: \[ \lim_{x \to \infty} \left( \ln(x^2 + 5x + 3) - \ln(x^2 + x + 2) \right) \] 7. **Differentiate the Numerator and Denominator**: Differentiate both functions: \[ \frac{d}{dx}(\ln(x^2 + 5x + 3)) = \frac{2x + 5}{x^2 + 5x + 3}, \quad \frac{d}{dx}(\ln(x^2 + x + 2)) = \frac{2x + 1}{x^2 + x + 2} \] 8. **Take the Limit**: Now we take the limit: \[ \lim_{x \to \infty} \left( \frac{2x + 5}{x^2 + 5x + 3} - \frac{2x + 1}{x^2 + x + 2} \right) \] This simplifies to: \[ \lim_{x \to \infty} \left( \frac{(2x + 5)(x^2 + x + 2) - (2x + 1)(x^2 + 5x + 3)}{(x^2 + 5x + 3)(x^2 + x + 2)} \right) \] 9. **Final Limit Calculation**: After simplifying, we find that the limit approaches \( 4 \). Thus: \[ \lim_{x \to \infty} \ln(f(x)) = 4 \implies \lim_{x \to \infty} f(x) = e^4 \] ### Conclusion: The limit is: \[ \lim_{x \to \infty} f(x) = e^4 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=((x^2+5x+3)/(x^2+x+2))^x then lim_(xrarroo)f(x) is equal to

If f(x+2) = 1/2{f(x + 1)+ (4)/(f(x))} and f(x gt 0 , for all x in R ,then lim_(x to infty)f(x) is

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to