Home
Class 12
MATHS
"lt"(x to 0) ((sin x)/x)^((sin x)/(x- si...

`"lt"_(x to 0) ((sin x)/x)^((sin x)/(x- sinx))` is:

A

`e^(-1)`

B

e

C

1

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the components of the limit:** We have \( f(x) = \frac{\sin x}{x} \) and \( g(x) = \frac{\sin x}{x - \sin x} \). 2. **Evaluate the limit of \( f(x) \) as \( x \to 0 \):** We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] 3. **Evaluate the limit of \( g(x) \) as \( x \to 0 \):** First, we need to simplify \( g(x) \): \[ g(x) = \frac{\sin x}{x - \sin x} \] As \( x \to 0 \), both the numerator and denominator approach 0. We can apply L'Hôpital's Rule: \[ \lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\sin x}{x - \sin x} = \lim_{x \to 0} \frac{\cos x}{1 - \cos x} = \frac{1}{0} \text{ (undefined)} \] However, we can rewrite \( x - \sin x \) using the Taylor series expansion: \[ x - \sin x \approx x - \left(x - \frac{x^3}{6} + O(x^5)\right) = \frac{x^3}{6} + O(x^5) \] Thus, \[ g(x) \approx \frac{\sin x}{\frac{x^3}{6}} = \frac{6 \sin x}{x^3} \] As \( x \to 0 \), we know \( \frac{\sin x}{x} \to 1 \), so: \[ g(x) \to \frac{6 \cdot 1}{0} \text{ (undefined)} \] 4. **Combine the results using the exponential limit form:** Since we have \( f(x) \to 1 \) and \( g(x) \to \infty \) (as \( g(x) \) approaches infinity), we can rewrite the limit in the form \( f(x)^{g(x)} \): \[ \lim_{x \to 0} f(x)^{g(x)} = e^{\lim_{x \to 0} (f(x) - 1) g(x)} \] 5. **Calculate \( (f(x) - 1) g(x) \):** We know: \[ f(x) - 1 = \frac{\sin x - x}{x} \] Thus, \[ (f(x) - 1) g(x) = \frac{\sin x - x}{x} \cdot \frac{\sin x}{x - \sin x} \] We can substitute \( \sin x - x \approx -\frac{x^3}{6} \) and \( x - \sin x \approx \frac{x^3}{6} \): \[ \lim_{x \to 0} \frac{-\frac{x^3}{6}}{x} \cdot \frac{\sin x}{\frac{x^3}{6}} = \lim_{x \to 0} -1 \cdot 1 = -1 \] 6. **Final result:** Therefore, we have: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{-1} = \frac{1}{e} \] ### Conclusion: The limit is: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} = \frac{1}{e} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin(sinx))/x

The value of lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

lim_(x to 0) (x^3 sin(1/x))/sinx

Lt_(x rarr0)x+(sin x)/(x+(sin x)/(x+(sin x)/(x+(sin x)/(x+(sin x)/(x+mu x))))=)

Lt_(x rarr0)(x-sin x)/(x^(3))

Solve: Lt_(x rarr0)(e^(x)-e^(sin x))/(4(x-sin x))

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

Evaluate: lim_(xto0)(5sin x-7sinx+3 sin3x)/(x^(2)sinx)