Home
Class 12
MATHS
If "lt"(x to 0)(cos^(2)x - cos x - e^(x)...

If `"lt"_(x to 0)(cos^(2)x - cos x - e^(x) cos x + e^(x) -x^(2)/2)/x^(n)` is a finite non-zero number, then the integer n is:

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to analyze the expression: \[ \lim_{x \to 0} \frac{\cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^2}{2}}{x^n} \] We want to find the integer \( n \) such that this limit is a finite non-zero number. ### Step 1: Simplify the Numerator First, we can rewrite the numerator: \[ \cos^2 x - \cos x - e^x \cos x + e^x - \frac{x^2}{2} \] We can group the terms involving \( \cos x \): \[ = \cos x (\cos x - e^x) + (e^x - \frac{x^2}{2}) - \cos x \] ### Step 2: Use Taylor Series Expansion Next, we can use the Taylor series expansions for \( \cos x \) and \( e^x \) around \( x = 0 \): - The Taylor series for \( \cos x \) is: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6) \] - The Taylor series for \( e^x \) is: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4) \] ### Step 3: Substitute the Taylor Series into the Expression Substituting these expansions into our expression gives: \[ \cos^2 x = (1 - \frac{x^2}{2} + \frac{x^4}{24})^2 = 1 - x^2 + \frac{x^4}{12} + O(x^6) \] Now substituting \( \cos x \) and \( e^x \): \[ \cos^2 x - \cos x = \left(1 - x^2 + \frac{x^4}{12}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) \] This simplifies to: \[ -\frac{x^2}{2} + \frac{x^4}{12} + \frac{x^2}{2} - \frac{x^4}{24} = \frac{x^4}{12} - \frac{x^4}{24} = \frac{x^4}{24} \] Now for \( -e^x \cos x + e^x \): \[ -e^x \cos x + e^x = -\left(1 + x + \frac{x^2}{2} + O(x^3)\right)\left(1 - \frac{x^2}{2} + O(x^4)\right) + \left(1 + x + \frac{x^2}{2}\right) \] This gives us a series of terms that will also contribute to the overall limit. ### Step 4: Combine and Analyze the Limit Combining all these terms, we will find that the leading term in the numerator will be of order \( x^4 \). Thus, we can approximate: \[ \lim_{x \to 0} \frac{\text{leading term}}{x^n} = \lim_{x \to 0} \frac{C x^4}{x^n} \] For this limit to be finite and non-zero, we need \( n = 4 \). ### Final Answer Thus, the integer \( n \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Find the integral value of n for which lim_(x rarr0)(cos^(2)x-cos x-e^(x)cos x+e^(x)-(x^(3))/(2))/(x^(n)) is a finite nonzero number

The integer n for which the lim_(x to 0)(cos^(2)x-cosx-e^(x)cosx+e^(x)-(x^(3))/2)/(x^(n)) is a finite non-zero number is

The integer ‘n’ for which the value of lim _( x to oo) (( 1- cos x) (e ^(x) - cos x) - (x ^(3))/( 2))/( x ^(n)) is a finite non zero number, is____.

The least integer n for which lim_(x to 0) ((cos x - 1) (cos x - e^(x)))/(x^(n)) is a finite non-zero number is

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is a finite non- zero number is:

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is finite nonzero number is

cos(x^(2)e^(x))