Home
Class 12
MATHS
For x gt 0, lim(x to 0)((sin x)^(1//x) +...

For `x gt 0, lim_(x to 0)((sin x)^(1//x) + (1/x)^(sin x))` is equal to:

A

`-1`

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( (\sin x)^{\frac{1}{x}} + \left(\frac{1}{x}\right)^{\sin x} \right) \), we will break it down into two parts: \( L_1 = \lim_{x \to 0} (\sin x)^{\frac{1}{x}} \) and \( L_2 = \lim_{x \to 0} \left(\frac{1}{x}\right)^{\sin x} \). ### Step 1: Evaluate \( L_1 = \lim_{x \to 0} (\sin x)^{\frac{1}{x}} \) 1. As \( x \to 0 \), \( \sin x \to 0 \). Therefore, we have the form \( 0^{\infty} \), which is indeterminate. 2. We can rewrite \( L_1 \) using the exponential function: \[ L_1 = e^{\lim_{x \to 0} \frac{\log(\sin x)}{x}} \] ### Step 2: Evaluate \( \lim_{x \to 0} \frac{\log(\sin x)}{x} \) 1. Using the fact that \( \sin x \approx x \) as \( x \to 0 \), we can write: \[ \log(\sin x) \approx \log(x) \] 2. Therefore, we can rewrite the limit: \[ \lim_{x \to 0} \frac{\log(\sin x)}{x} \approx \lim_{x \to 0} \frac{\log(x)}{x} \] 3. This limit is of the form \( \frac{-\infty}{0} \), which is also indeterminate. ### Step 3: Apply L'Hôpital's Rule 1. Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx} \log(x) = \frac{1}{x}, \quad \text{Denominator: } \frac{d}{dx} x = 1 \] 2. Applying L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\log(x)}{x} = \lim_{x \to 0} \frac{1/x}{1} = \lim_{x \to 0} \frac{1}{x} = -\infty \] ### Step 4: Conclude \( L_1 \) 1. Since \( \lim_{x \to 0} \frac{\log(\sin x)}{x} = -\infty \), we have: \[ L_1 = e^{-\infty} = 0 \] ### Step 5: Evaluate \( L_2 = \lim_{x \to 0} \left(\frac{1}{x}\right)^{\sin x} \) 1. Rewrite \( L_2 \): \[ L_2 = e^{\lim_{x \to 0} \sin x \cdot \log\left(\frac{1}{x}\right)} = e^{\lim_{x \to 0} \sin x \cdot (-\log x)} \] 2. As \( x \to 0 \), \( \sin x \approx x \), so: \[ \lim_{x \to 0} \sin x \cdot (-\log x) \approx \lim_{x \to 0} x \cdot (-\log x) \] ### Step 6: Evaluate \( \lim_{x \to 0} x \cdot (-\log x) \) 1. This limit is of the form \( 0 \cdot \infty \), which is indeterminate. 2. Rewrite it as: \[ \lim_{x \to 0} \frac{-\log x}{1/x} \] 3. Apply L'Hôpital's Rule: \[ \text{Numerator: } \frac{d}{dx} (-\log x) = -\frac{1}{x}, \quad \text{Denominator: } \frac{d}{dx} (1/x) = -\frac{1}{x^2} \] 4. Thus: \[ \lim_{x \to 0} \frac{-\log x}{1/x} = \lim_{x \to 0} \frac{-\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} x = 0 \] ### Step 7: Conclude \( L_2 \) 1. Since \( \lim_{x \to 0} x \cdot (-\log x) = 0 \), we have: \[ L_2 = e^0 = 1 \] ### Step 8: Combine \( L_1 \) and \( L_2 \) 1. Now, we can combine the results: \[ L = L_1 + L_2 = 0 + 1 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( (\sin x)^{\frac{1}{x}} + \left(\frac{1}{x}\right)^{\sin x} \right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(a^(sin x)-1)/(b^(sin x)-1) is equal to

lim_(x rarr0)((sin x)/(x))^((1)/(x))

lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)((sin x)/(x))^((1)/(x^(2))) is equal to

lim_(x rarr0)(1+sin x)^(cot x)