Home
Class 12
MATHS
lim(x to 0) (sin x - x + 1/6x^(3))/x^(5)...

`lim_(x to 0) (sin x - x + 1/6x^(3))/x^(5)` = ……………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5} \), we will use the Taylor series expansion for \( \sin x \). ### Step 1: Expand \( \sin x \) The Taylor series expansion of \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \] Substituting this into our limit gives: \[ \sin x - x = -\frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \ldots \] ### Step 2: Substitute into the limit Now, substituting this expansion into the limit expression: \[ \sin x - x + \frac{1}{6}x^3 = -\frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{1}{6}x^3 \] The \( -\frac{x^3}{6} \) and \( \frac{1}{6}x^3 \) cancel each other out: \[ = \frac{x^5}{120} - \frac{x^7}{5040} + \ldots \] ### Step 3: Rewrite the limit Now, we can rewrite the limit: \[ \lim_{x \to 0} \frac{\frac{x^5}{120} - \frac{x^7}{5040} + \ldots}{x^5} \] This simplifies to: \[ \lim_{x \to 0} \left( \frac{1}{120} - \frac{x^2}{5040} + \ldots \right) \] ### Step 4: Evaluate the limit As \( x \to 0 \), the terms involving \( x \) vanish: \[ \lim_{x \to 0} \left( \frac{1}{120} - \frac{x^2}{5040} + \ldots \right) = \frac{1}{120} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5} = \frac{1}{120} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x-x+(1)/(6)x^(3))/(x^(3))

lim_(x rarr0)(sin x-x+(1)/(3)x^(3))/(x^(5))

lim_(x rarr0)(3sin x-sin3x)/(x^(3))

lim_(x rarr0)(2(tan x-sin x)-x^(3))/(x^(5))

lim_(x rarr0)(sin x-x)/(x^(3))

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(x rarr0)(sin x)/(x+5)

lim_(x rarr0)(sin 5 x)/(x)

lim_(x rarr0)(sin x^(2)(1-cos x^(2)))/(x^(6))