Home
Class 12
MATHS
lim(n to infty) [1- log(1+1/n)^(n-1)] is...

`lim_(n to infty) [1- log(1+1/n)^(n-1)]` is…………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left[ 1 - \log\left(1 + \frac{1}{n}\right)^{n-1} \right] \), we can follow these steps: ### Step 1: Rewrite the logarithmic expression Using the property of logarithms, we can rewrite the expression inside the limit: \[ \log\left(1 + \frac{1}{n}\right)^{n-1} = (n-1) \log\left(1 + \frac{1}{n}\right) \] Thus, the limit becomes: \[ \lim_{n \to \infty} \left[ 1 - (n-1) \log\left(1 + \frac{1}{n}\right) \right] \] ### Step 2: Expand the logarithm using Taylor series For small values of \( x \), we can use the Taylor series expansion: \[ \log(1 + x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \] Substituting \( x = \frac{1}{n} \): \[ \log\left(1 + \frac{1}{n}\right) \approx \frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right) \] ### Step 3: Substitute the expansion back into the limit Now substituting this expansion back into our limit: \[ (n-1) \log\left(1 + \frac{1}{n}\right) \approx (n-1)\left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right) \] This simplifies to: \[ (n-1)\left(\frac{1}{n}\right) - (n-1)\left(\frac{1}{2n^2}\right) + O\left(\frac{n-1}{n^3}\right) \] \[ = 1 - \frac{1}{n} - \frac{1}{2n} + O\left(\frac{1}{n^2}\right) \] ### Step 4: Substitute back into the limit expression Now substituting this back into our limit: \[ \lim_{n \to \infty} \left[ 1 - \left(1 - \frac{1}{n} - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right) \right] \] This simplifies to: \[ \lim_{n \to \infty} \left[ \frac{1}{n} + \frac{1}{2n} - O\left(\frac{1}{n^2}\right) \right] \] \[ = \lim_{n \to \infty} \left[ \frac{3}{2n} - O\left(\frac{1}{n^2}\right) \right] \] ### Step 5: Evaluate the limit As \( n \to \infty \), both terms \( \frac{3}{2n} \) and \( O\left(\frac{1}{n^2}\right) \) approach 0: \[ \lim_{n \to \infty} \left[ \frac{3}{2n} \right] = 0 \] Thus, the final result is: \[ \lim_{n \to \infty} \left[ 1 - \log\left(1 + \frac{1}{n}\right)^{n-1} \right] = 0 \] ### Final Answer: The limit is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) [1-ln (1+ (1) / (n)) ^ (n-2)] is equal to

For x in R -{-1/n, n in N} , define f(x) = lim_(n to infty)(x/(x+1) + x/((x+1)(2x+1)) + x/((2x+1)(3x+1))) + ….. + upto n terms then range of f contains exactly……….. Element(s).

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

Evaluate: lim_(n rarr infty)[1/n+1/(n+1)+1/(n+2)+ cdot cdot cdot +1/(3n)] .