Home
Class 12
MATHS
If the function: f(x) = {{:((x^(2)-(A+...

If the function:
`f(x) = {{:((x^(2)-(A+ 2)x+A)/(x-2), "for", x ne 2),(2, "for", x =2):}` is continous at x=2, then A is:

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( A \) for which the function \[ f(x) = \begin{cases} \frac{x^2 - (A + 2)x + A}{x - 2} & \text{for } x \neq 2 \\ 2 & \text{for } x = 2 \end{cases} \] is continuous at \( x = 2 \), we need to ensure that \[ \lim_{x \to 2} f(x) = f(2). \] ### Step 1: Find \( f(2) \) Since \( f(2) \) is defined as \( 2 \), we have: \[ f(2) = 2. \] ### Step 2: Compute the limit as \( x \) approaches 2 We need to find: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - (A + 2)x + A}{x - 2}. \] ### Step 3: Substitute \( x = 2 \) into the limit Substituting \( x = 2 \) directly into the function gives us an indeterminate form \( \frac{0}{0} \): \[ f(2) = \frac{2^2 - (A + 2) \cdot 2 + A}{2 - 2} = \frac{4 - 2A - 4 + A}{0} = \frac{A - 2}{0}. \] ### Step 4: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and denominator: \[ \lim_{x \to 2} \frac{d}{dx}(x^2 - (A + 2)x + A) \Big/ \frac{d}{dx}(x - 2). \] The derivative of the numerator is: \[ \frac{d}{dx}(x^2 - (A + 2)x + A) = 2x - (A + 2), \] and the derivative of the denominator is: \[ \frac{d}{dx}(x - 2) = 1. \] Thus, we have: \[ \lim_{x \to 2} \frac{2x - (A + 2)}{1}. \] ### Step 5: Evaluate the limit Now substituting \( x = 2 \): \[ \lim_{x \to 2} (2x - (A + 2)) = 2(2) - (A + 2) = 4 - (A + 2) = 4 - A - 2 = 2 - A. \] ### Step 6: Set the limit equal to \( f(2) \) For continuity at \( x = 2 \): \[ \lim_{x \to 2} f(x) = f(2) \implies 2 - A = 2. \] ### Step 7: Solve for \( A \) Solving the equation: \[ 2 - A = 2 \implies -A = 0 \implies A = 0. \] ### Conclusion Thus, the value of \( A \) for which the function is continuous at \( x = 2 \) is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",","for" x = 2):} is continuous at x = 2, then

If the function f(x) ={((x^(2)-(k+2)x+2k)/(x-2),"for " x ne 2),(2," for x =2):} is continuous at x =2, then k is equal to

If f(x) = {{:((x^(2)-(a+2)x+2a)/(x-2)",",x ne 2),(" "2",",x = 2):} is continuous at x = 2, then a is equal to

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

if the function f(x)=(x^(2)-(a+2)x+a)/(x-2) for x!=2 and f(x)=2 for x=2 is continuous function at x=2 then value ofa is:

f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2 .

For the function f(x)=2x^(2)-In|x|

If the function f(x)=(x^(2)-(A+2)x+A)/(x-2), for x!=2 and f(2)=2 is continuous at x=2, then find the value of A.

If f (x) = [{:((ae^(sin x )+be ^(-sinx)-c)/(x ^(2)),,, x ne0),(2, ,, x =0):} is continous at x=0, then:

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  2. The value of f(0) so that the function f(x) = (log(1+x^(2) tanx)...

    Text Solution

    |

  3. If the function: f(x) = {{:((x^(2)-(A+ 2)x+A)/(x-2), "for", x ne 2),...

    Text Solution

    |

  4. If f(x) =(cos^(2) pix)/(e^(2x) - 2ex), x ne 1/2, the value of f(1/2), ...

    Text Solution

    |

  5. The value of b for which the function f(x) = {{:(5x-4, 0 lt x le 1)...

    Text Solution

    |

  6. if f(x) = {{:(x + lambda, -1 lt x lt 3),(4, x =3),(3x-5, x gt 3):}, is...

    Text Solution

    |

  7. If the function f(x) = {{:((cos x)^(1//x), x ne 0),(=k, x =0):}, is co...

    Text Solution

    |

  8. Let f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If ...

    Text Solution

    |

  9. Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]. If f(x) is con...

    Text Solution

    |

  10. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  11. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  12. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  13. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  14. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  15. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  16. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  17. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  18. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  19. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  20. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |