Home
Class 12
MATHS
If f(x) =(cos^(2) pix)/(e^(2x) - 2ex), x...

If `f(x) =(cos^(2) pix)/(e^(2x) - 2ex), x ne 1/2`, the value of `f(1/2)`, so that f (x) is continuous at `x=1/2` is:

A

`pi/(2e^(2))`

B

`pi/(2e)`

C

`pi^(2)/(2e^(2))`

D

`pi^(2)/(2e)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f\left(\frac{1}{2}\right) \) such that \( f(x) \) is continuous at \( x = \frac{1}{2} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{1}{2} \) equals \( f\left(\frac{1}{2}\right) \). ### Step 1: Define the function The function is given as: \[ f(x) = \frac{\cos^2(\pi x)}{e^{2x} - 2e^x}, \quad x \neq \frac{1}{2} \] ### Step 2: Find the limit as \( x \) approaches \( \frac{1}{2} \) To find \( f\left(\frac{1}{2}\right) \), we need to compute: \[ \lim_{x \to \frac{1}{2}} f(x) = \lim_{x \to \frac{1}{2}} \frac{\cos^2(\pi x)}{e^{2x} - 2e^x} \] ### Step 3: Substitute \( x = \frac{1}{2} \) Substituting \( x = \frac{1}{2} \): - The numerator becomes: \[ \cos^2\left(\pi \cdot \frac{1}{2}\right) = \cos^2\left(\frac{\pi}{2}\right) = 0 \] - The denominator becomes: \[ e^{2 \cdot \frac{1}{2}} - 2e^{\frac{1}{2}} = e - 2\sqrt{e} = 0 \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 4: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{1}{2}} f(x) = \lim_{x \to \frac{1}{2}} \frac{\frac{d}{dx}(\cos^2(\pi x))}{\frac{d}{dx}(e^{2x} - 2e^x)} \] ### Step 5: Differentiate the numerator and denominator - The derivative of the numerator: \[ \frac{d}{dx}(\cos^2(\pi x)) = 2\cos(\pi x)(-\sin(\pi x)\cdot \pi) = -2\pi \cos(\pi x) \sin(\pi x) \] - The derivative of the denominator: \[ \frac{d}{dx}(e^{2x} - 2e^x) = 2e^{2x} - 2e^x \] ### Step 6: Substitute back into the limit Now we compute: \[ \lim_{x \to \frac{1}{2}} \frac{-2\pi \cos(\pi x) \sin(\pi x)}{2e^{2x} - 2e^x} \] This simplifies to: \[ \lim_{x \to \frac{1}{2}} \frac{-\pi \cos(\pi x) \sin(\pi x)}{e^{2x} - e^x} \] ### Step 7: Substitute \( x = \frac{1}{2} \) again Substituting \( x = \frac{1}{2} \): - The numerator becomes: \[ -\pi \cos\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) = -\pi \cdot 0 \cdot 1 = 0 \] - The denominator becomes: \[ e - \sqrt{e} = 0 \] Again, we have a \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again. ### Step 8: Differentiate again Differentiate the numerator and denominator again: - The new numerator derivative will involve the product rule and chain rule, and the denominator will be differentiated again. ### Step 9: Final limit evaluation After applying L'Hôpital's Rule again and simplifying, we will eventually arrive at a non-indeterminate form. ### Step 10: Conclusion After evaluating the limit, we find: \[ f\left(\frac{1}{2}\right) = \frac{\pi^2}{2e} \] Thus, the value of \( f\left(\frac{1}{2}\right) \) so that \( f(x) \) is continuous at \( x = \frac{1}{2} \) is: \[ \boxed{\frac{\pi^2}{2e}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of f(1) so that f(x)= (e^x-e)//(x-1) is continuous at x =1 is

Value of f(-2) so that f(x)= (x^(3)+8)/(x+2) is continuous at x = -2 is

Let f(x)=(log (1+x+x^2)+log(1-x+x^2))/(sec x-cosx) , x ne 0 .Then the value of f(0) so that f is continuous at x=0 is

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)

The function f(x) = (x-1)^(1/((2-x)) is not defined at x = 2. The value of f(2) so that f is continuous at x = 2 is

Let f(x)=(1-cos x sqrt(cos 2x))/x^2 , x ne 0 The value of f(0) so that f is a continuous function is

Let f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), x ne pi//4 . The value f(pi//4) so that f is continuous is (sqrt2=1.41)

Let f(x)=(tan[e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x),x!=0 then the value of f(0) so that f is a continuous function is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The value of f(0) so that the function f(x) = (log(1+x^(2) tanx)...

    Text Solution

    |

  2. If the function: f(x) = {{:((x^(2)-(A+ 2)x+A)/(x-2), "for", x ne 2),...

    Text Solution

    |

  3. If f(x) =(cos^(2) pix)/(e^(2x) - 2ex), x ne 1/2, the value of f(1/2), ...

    Text Solution

    |

  4. The value of b for which the function f(x) = {{:(5x-4, 0 lt x le 1)...

    Text Solution

    |

  5. if f(x) = {{:(x + lambda, -1 lt x lt 3),(4, x =3),(3x-5, x gt 3):}, is...

    Text Solution

    |

  6. If the function f(x) = {{:((cos x)^(1//x), x ne 0),(=k, x =0):}, is co...

    Text Solution

    |

  7. Let f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If ...

    Text Solution

    |

  8. Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]. If f(x) is con...

    Text Solution

    |

  9. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  10. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  11. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  12. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  13. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  14. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  15. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  16. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  17. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  18. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  19. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  20. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |