Home
Class 12
MATHS
Let f(x) = {{:((x^(3) + x^(2) -16x +20)/...

Let `f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If x=2):}`, If `f(x)` is continous for all x, then k=

A

3

B

5

C

7

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 2 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 2 equals \( f(2) \). **Step 1: Define the function and the limit condition** The function is defined as: \[ f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] For \( f(x) \) to be continuous at \( x = 2 \), we need: \[ \lim_{x \to 2} f(x) = f(2) = k \] **Step 2: Calculate the limit as \( x \) approaches 2** We need to compute: \[ \lim_{x \to 2} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} \] First, we substitute \( x = 2 \) into the numerator: \[ 2^3 + 2^2 - 16 \cdot 2 + 20 = 8 + 4 - 32 + 20 = 0 \] The numerator evaluates to 0, and the denominator also evaluates to 0: \[ (2-2)^2 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). **Step 3: Apply L'Hôpital's Rule** Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit exists. Here, we differentiate the numerator and the denominator: - The derivative of the numerator \( x^3 + x^2 - 16x + 20 \) is: \[ 3x^2 + 2x - 16 \] - The derivative of the denominator \( (x-2)^2 \) is: \[ 2(x-2) \] Thus, we have: \[ \lim_{x \to 2} \frac{3x^2 + 2x - 16}{2(x-2)} \] **Step 4: Substitute \( x = 2 \) again** Substituting \( x = 2 \) into the new limit: - The numerator becomes: \[ 3(2^2) + 2(2) - 16 = 3(4) + 4 - 16 = 12 + 4 - 16 = 0 \] - The denominator becomes: \[ 2(2-2) = 2(0) = 0 \] We still have the indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. **Step 5: Differentiate again** Differentiate the numerator and denominator again: - The second derivative of the numerator \( 3x^2 + 2x - 16 \) is: \[ 6x + 2 \] - The second derivative of the denominator \( 2(x-2) \) is: \[ 2 \] Now we compute the limit: \[ \lim_{x \to 2} \frac{6x + 2}{2} \] Substituting \( x = 2 \): \[ \frac{6(2) + 2}{2} = \frac{12 + 2}{2} = \frac{14}{2} = 7 \] **Step 6: Set the limit equal to \( k \)** Since we found that: \[ \lim_{x \to 2} f(x) = 7 \] For continuity, we must have: \[ k = 7 \] Thus, the value of \( k \) is: \[ \boxed{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) ={{:((x^(3)+x^(2)-16x+20)//(x-2)^(2)"," if x ne 2),(R", "if x = 2):} If f(x) is continuous for all x, then k = … .

f(x)={((x^(3)+x^(2)-16x+20))/(((x-2))^(2)),quad if x!=2 and k,quad if x=2 If f(x) is conti-nuous for all x, then k=

If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ", if " x = 2 ) :} is continuous at x = 2 , then

Let f (x = {{: ((x^(2) - 4x + 3)/(x^(2) + 2x - 3), x ne 1),(k, x = 1):} If f (x) is continuous at x= 1, then the value of k will be

If f(x)={((x^(3)+x^(2)-16x+20)/((x-2)^(2))",",x ne 2),(k",", x =2):} is continuous at x = 2, then the value of k is

f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} , x = 2 .

If the function f(x) ={((x^(2)-(k+2)x+2k)/(x-2),"for " x ne 2),(2," for x =2):} is continuous at x =2, then k is equal to

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. if f(x) = {{:(x + lambda, -1 lt x lt 3),(4, x =3),(3x-5, x gt 3):}, is...

    Text Solution

    |

  2. If the function f(x) = {{:((cos x)^(1//x), x ne 0),(=k, x =0):}, is co...

    Text Solution

    |

  3. Let f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If ...

    Text Solution

    |

  4. Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]. If f(x) is con...

    Text Solution

    |

  5. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  6. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  7. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  8. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  9. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  10. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  11. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  12. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  13. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  14. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  15. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  16. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  17. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  18. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  19. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  20. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |