Home
Class 12
MATHS
Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, ...

Let `f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]`. If `f(x)` is continuous in `[0,pi/2]`, then `f(pi/4)`=

A

1

B

`1//2`

C

`-1//2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f\left(\frac{\pi}{4}\right) \) for the function \( f(x) = \frac{1 - \tan x}{4x - \pi} \) where \( x \neq \frac{\pi}{4} \) and \( x \in [0, \frac{\pi}{2}] \), we need to ensure that \( f(x) \) is continuous at \( x = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Check for Continuity**: For \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need: \[ f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x) \] 2. **Calculate the Limit**: We need to calculate: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} \] First, substitute \( x = \frac{\pi}{4} \): \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad 4\left(\frac{\pi}{4}\right) - \pi = 0 \] This gives us the form \( \frac{0}{0} \), which is indeterminate. 3. **Apply L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4} \] 4. **Differentiate the Numerator and Denominator**: The derivative of the numerator \( 1 - \tan x \) is \( -\sec^2 x \) and the derivative of the denominator \( 4x - \pi \) is \( 4 \). 5. **Evaluate the Limit**: Now we substitute \( x = \frac{\pi}{4} \) into the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4} = \frac{-\sec^2\left(\frac{\pi}{4}\right)}{4} \] We know that \( \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \), so: \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \] Therefore: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4} = \frac{-2}{4} = -\frac{1}{2} \] 6. **Conclusion**: Since \( f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x) \), we have: \[ f\left(\frac{\pi}{4}\right) = -\frac{1}{2} \] ### Final Answer: \[ f\left(\frac{\pi}{4}\right) = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

Let f(x)=(1-tan x)/(4x-pi),x!=(pi)/(4),x in[0,(pi)/(2)], If f(x) is continuous in [0,(pi)/(4)], then find the value of f((pi)/(4))

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4 , is continuous in (0, pi/2) , then f((pi)/(4)) is equal to

If f(x) = (1- cos 7(x-pi))/(x-pi), (x ne pi) is continuous at x =pi , then f(pi) equals-

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)

If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):} is continuous at x = (pi)/(4) , then a =

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If the function f(x) = {{:((cos x)^(1//x), x ne 0),(=k, x =0):}, is co...

    Text Solution

    |

  2. Let f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If ...

    Text Solution

    |

  3. Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]. If f(x) is con...

    Text Solution

    |

  4. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  6. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  7. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  8. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  9. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  10. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  11. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  12. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  13. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  14. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  15. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  16. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  17. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  18. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  19. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  20. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |