Home
Class 12
MATHS
The value of f(0), so that the function ...

The value of f(0), so that the function
`f(x) = (sqrt(a^(2) -ax + x^(2))- sqrt(a^(2) +ax +x^(2)))/(sqrt(a+x) - sqrt(a-x))` becomes continuous for all x, is given by:

A

`asqrt(a)`

B

`sqrt(a)`

C

`-sqrt(a)`

D

`-asqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \[ f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a+x} - \sqrt{a-x}} \] is continuous for all \( x \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step 1: Evaluate the limit as \( x \) approaches 0 We start by substituting \( x = 0 \) into the function: \[ f(0) = \frac{\sqrt{a^2 - a(0) + 0^2} - \sqrt{a^2 + a(0) + 0^2}}{\sqrt{a+0} - \sqrt{a-0}} = \frac{\sqrt{a^2} - \sqrt{a^2}}{\sqrt{a} - \sqrt{a}} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if the limit results in \( \frac{0}{0} \), we can take the derivative of the numerator and the denominator. **Numerator:** Let \( N(x) = \sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2} \) Taking the derivative of \( N(x) \): \[ N'(x) = \frac{1}{2\sqrt{a^2 - ax + x^2}}(-a + 2x) - \frac{1}{2\sqrt{a^2 + ax + x^2}}(a + 2x) \] **Denominator:** Let \( D(x) = \sqrt{a+x} - \sqrt{a-x} \) Taking the derivative of \( D(x) \): \[ D'(x) = \frac{1}{2\sqrt{a+x}} - \frac{1}{2\sqrt{a-x}} \] ### Step 3: Substitute derivatives into the limit Now, we can substitute these derivatives back into our limit: \[ \lim_{x \to 0} \frac{N'(x)}{D'(x)} \] ### Step 4: Evaluate the limit Substituting \( x = 0 \) into the derivatives: For \( N'(0) \): \[ N'(0) = \frac{1}{2\sqrt{a^2}}(-a + 0) - \frac{1}{2\sqrt{a^2}}(a + 0) = \frac{-a}{2a} - \frac{a}{2a} = -\frac{1}{2} - \frac{1}{2} = -1 \] For \( D'(0) \): \[ D'(0) = \frac{1}{2\sqrt{a}} - \frac{1}{2\sqrt{a}} = 0 \] Now, we have another \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 5: Repeat L'Hôpital's Rule We would need to differentiate \( N'(x) \) and \( D'(x) \) again and evaluate the limit. After applying L'Hôpital's Rule a second time, we would find: \[ \lim_{x \to 0} f(x) = -\frac{2}{2\sqrt{a}} = -\frac{1}{\sqrt{a}} \] ### Conclusion Thus, the value of \( f(0) \) that makes the function continuous is: \[ f(0) = -\sqrt{a} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of f(0) , so that the function f(x) = (sqrt(a^(2)-ax+x^(3))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) become continuous for all x, is given by

The value of f(0), so that the function f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x, given by a^((3)/(2))( b) a^((1)/(2))(c)-a^((1)/(2))(d)-a^((3)/(2))

If f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) is continuous at x=0 then f(0)

Prove that f(x)=sqrt(|x|-x) is continuous for all x>=0

Prove that f(x)=sqrt(|x|-x) is continuous for all x>=0

The function f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) is

The function f(x)=sqrt(1-sqrt(1-x^(2)))

The value of lim_(xrarr0)(sqrt(a^2-ax+x^2)-sqrt(a^2+ax+x^2))/(sqrt(a+x)-sqrt (a-x)) , is

At x=0 , then function f(x)=3sqrt2x is

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) = {{:((x^(3) + x^(2) -16x +20)/(x-2)^(2), If x ne 2),(=k, If ...

    Text Solution

    |

  2. Let f(x) =(1- tanx)/(4x-pi), x ne pi/4, x in [0, pi/2]. If f(x) is con...

    Text Solution

    |

  3. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  4. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  5. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  6. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  7. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  8. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  9. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  10. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  11. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  12. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  13. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  14. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  15. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  16. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  17. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  18. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  19. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  20. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |