Home
Class 12
MATHS
f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1...

`f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 le x le 1):}` is continuous in the interval [-1,1], then p is equal to:

A

`-1`

B

`-1//2`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) such that the function \[ f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x} & \text{for } -1 \leq x < 0 \\ \frac{2x+1}{x-2} & \text{for } 0 \leq x \leq 1 \end{cases} \] is continuous on the interval \([-1, 1]\), we need to ensure that the function is continuous at \( x = 0 \). ### Step 1: Check continuity at \( x = 0 \) For the function to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) \] ### Step 2: Calculate \( f(0) \) For \( x \) in the interval \( [0, 1] \): \[ f(0) = \frac{2(0) + 1}{0 - 2} = \frac{1}{-2} = -\frac{1}{2} \] ### Step 3: Calculate \( \lim_{x \to 0^-} f(x) \) For \( x \) in the interval \( [-1, 0) \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0} \frac{\sqrt{1+px} - \sqrt{1-px}}{x} \] This limit is of the form \( \frac{0}{0} \) as both the numerator and denominator approach 0 when \( x \to 0 \). We can apply L'Hôpital's Rule: ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator: 1. **Numerator**: \[ \frac{d}{dx}(\sqrt{1+px} - \sqrt{1-px}) = \frac{p}{2\sqrt{1+px}} + \frac{p}{2\sqrt{1-px}} \] 2. **Denominator**: \[ \frac{d}{dx}(x) = 1 \] Thus, we have: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0} \left( \frac{p}{2\sqrt{1+px}} + \frac{p}{2\sqrt{1-px}} \right) \] ### Step 5: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = \frac{p}{2\sqrt{1}} + \frac{p}{2\sqrt{1}} = \frac{p}{2} + \frac{p}{2} = \frac{p}{1} = p \] ### Step 6: Set the limits equal for continuity Now, set the limits equal to ensure continuity at \( x = 0 \): \[ p = -\frac{1}{2} \] ### Conclusion Thus, the value of \( p \) that makes the function continuous on the interval \([-1, 1]\) is \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x)={[(srt(1+px)-sqrt(1-px))/x,-1<=x<0],[(2x+1)/(x-2),0<=x<=1]}is continuous in the interval [-1, 1], then 'p' is equal to:,0

f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=x<0(2x+1)/(x-2),0geqxgeq1 is continuous in the interval [-1,1], then p is equal to -1 (b) -1/2 (c) 1/2 (d) 1

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….

If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(= 3x^(2) + 2x - 2 ", if " 0 le x lt 1 ):} is continuous on its domain , then : p =

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The value of f(0), so that the function f(x) = (sqrt(a^(2) -ax + x^(...

    Text Solution

    |

  2. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  3. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  4. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  5. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  6. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  7. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  8. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  9. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  10. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  11. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  12. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  13. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  14. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  15. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  16. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  17. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  18. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  19. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  20. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |