Home
Class 12
MATHS
The function f(x) = {{:(x^(2)//a, 0 le x...

The function `f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),((2b^(2) - 4b)//x^(2), sqrt(2) le x lt infty):}` is continuous for `0 le x lt infty`, then the most suitable values of a and b are

A

a=1, b=-1

B

`a=-1, b= 1+sqrt(2)`

C

`a=-1, b=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the definition of the function changes, specifically at \( x = 1 \) and \( x = \sqrt{2} \). ### Step 1: Continuity at \( x = 1 \) The function is defined as: - \( f(x) = \frac{x^2}{a} \) for \( 0 \leq x < 1 \) - \( f(x) = a \) for \( 1 \leq x < \sqrt{2} \) To ensure continuity at \( x = 1 \), we need: \[ f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2}{a} \] Calculating the limit: \[ \lim_{x \to 1^-} \frac{x^2}{a} = \frac{1^2}{a} = \frac{1}{a} \] Thus, we require: \[ f(1) = a = \frac{1}{a} \] Multiplying both sides by \( a \) (assuming \( a \neq 0 \)): \[ a^2 = 1 \] This gives us: \[ a = 1 \quad \text{or} \quad a = -1 \] ### Step 2: Continuity at \( x = \sqrt{2} \) Next, we check continuity at \( x = \sqrt{2} \): - For \( x \) approaching \( \sqrt{2} \) from the left, we have: \[ f(\sqrt{2}) = a \] - For \( x \) approaching \( \sqrt{2} \) from the right, we have: \[ f(x) = \frac{2b^2 - 4b}{x^2} \quad \text{for } x \geq \sqrt{2} \] Calculating the limit: \[ \lim_{x \to \sqrt{2}^+} f(x) = \frac{2b^2 - 4b}{(\sqrt{2})^2} = \frac{2b^2 - 4b}{2} = b^2 - 2b \] Setting these equal for continuity: \[ a = b^2 - 2b \] ### Step 3: Finding suitable values for \( a \) and \( b \) Now we have two equations: 1. \( a^2 = 1 \) gives \( a = 1 \) or \( a = -1 \) 2. \( a = b^2 - 2b \) #### Case 1: \( a = 1 \) Substituting \( a = 1 \) into the second equation: \[ 1 = b^2 - 2b \] Rearranging gives: \[ b^2 - 2b - 1 = 0 \] Using the quadratic formula: \[ b = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2} \] #### Case 2: \( a = -1 \) Substituting \( a = -1 \) into the second equation: \[ -1 = b^2 - 2b \] Rearranging gives: \[ b^2 - 2b + 1 = 0 \implies (b - 1)^2 = 0 \implies b = 1 \] ### Conclusion The most suitable values of \( a \) and \( b \) are: 1. \( a = 1 \) and \( b = 1 + \sqrt{2} \) or \( b = 1 - \sqrt{2} \) 2. \( a = -1 \) and \( b = 1 \) ### Final Answer The most suitable values of \( a \) and \( b \) are: - \( a = 1 \), \( b = 1 + \sqrt{2} \) or \( b = 1 - \sqrt{2} \) - \( a = -1 \), \( b = 1 \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x) {:(=x^(2)/a", if " 0 le x lt 1 ),(= a", if " 1 le x lt sqrt(2) ),(=(2b^(2)-4b)/(x^(2))", if " sqrt(2) le x ) :} is continuous in (0,oo) , then the most suitable values of a and b ( in that order ) are

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If : f(x) {:(=ax^(2)-b", ... " 0 le x lt 1 ),(=2", ... "x=1 ),(= x+1", ... " 1 lt x le 2 ) :} is continuous at x= 1 , then the most suitable values of a and b are

Let a , b in R,(a ne 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

If the function f(x) = {(1+(sin)(pi x)/2,",","for"-oo lt x le 1),(ax+b, ",","for" 1 lt x lt 3),(6(tan)(pi x)/12,",","for"3 le x lt 6):} is continuous in the interval (-oo, 6) , then the value of a and b are respectively

If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " 1 lt x le 2):} is continuous at x=1 , then the most suitable values of a, b are

If f(x) = {(ax^(2)-b, ",", "when" 0 le x le 1),(2, ",","when"x = 1),(x+1, ",","when"1 lt x le 2):} is continuous at x = 1, then the most suitable values of a, b are

The function f(x)={x^2a a(2b^2-4b)/(x^2) ,if0lt=x<1,if1lt=x

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. f(x) ={{:((sqrt(1+px)- sqrt(1-px))/x, -1 le x lt 0),((2x+1)/(x-2), 0 l...

    Text Solution

    |

  2. f(x) =(x-1)^(1/(2-x)) is not defined at x = 2. If f(x) is continuous,...

    Text Solution

    |

  3. The function f(x) = {{:(x^(2)//a, 0 le x lt 1),(a, 1 le x lt sqrt(2)),...

    Text Solution

    |

  4. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  5. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  6. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  7. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  8. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  9. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  10. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  11. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  12. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  13. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  14. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  15. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  16. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  17. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  18. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  19. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  20. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |