Home
Class 12
MATHS
If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda...

If `f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0` and f (0) = 8 be a continuous function then `lambda` =

A

2

B

1

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) such that the function \(f(x) = \frac{(e^x - 1)^4}{\sin\left(\frac{x^2}{\lambda^2}\right) \log\left(1 + \frac{x^2}{2}\right)}\) is continuous at \(x = 0\) and \(f(0) = 8\). ### Step-by-Step Solution: 1. **Understanding Continuity**: For \(f(x)\) to be continuous at \(x = 0\), we need: \[ f(0) = \lim_{x \to 0} f(x) \] Given that \(f(0) = 8\), we need to compute \(\lim_{x \to 0} f(x)\). 2. **Substituting into the Limit**: We can express the limit as: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(e^x - 1)^4}{\sin\left(\frac{x^2}{\lambda^2}\right) \log\left(1 + \frac{x^2}{2}\right)} \] 3. **Using Taylor Series Expansions**: - For small \(x\), we have: \[ e^x - 1 \approx x \quad \text{(as } x \to 0\text{)} \] Therefore, \[ (e^x - 1)^4 \approx x^4 \] - For \(\sin\left(\frac{x^2}{\lambda^2}\right)\): \[ \sin\left(\frac{x^2}{\lambda^2}\right) \approx \frac{x^2}{\lambda^2} \quad \text{(as } x \to 0\text{)} \] - For \(\log\left(1 + \frac{x^2}{2}\right)\): \[ \log\left(1 + \frac{x^2}{2}\right) \approx \frac{x^2}{2} \quad \text{(as } x \to 0\text{)} \] 4. **Substituting the Approximations**: Now we substitute these approximations into the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^4}{\left(\frac{x^2}{\lambda^2}\right) \left(\frac{x^2}{2}\right)} = \lim_{x \to 0} \frac{x^4}{\frac{x^4}{2\lambda^2}} = \lim_{x \to 0} 2\lambda^2 \] 5. **Setting the Limit Equal to 8**: Since we need this limit to equal \(8\): \[ 2\lambda^2 = 8 \] 6. **Solving for \(\lambda\)**: Dividing both sides by \(2\): \[ \lambda^2 = 4 \] Taking the square root: \[ \lambda = \pm 2 \] ### Final Answer: Thus, the values of \(\lambda\) are \(2\) and \(-2\).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of k(k gt 0) for which the function f(x)=(e^x-1)^4/(sin(x^2//k^2) log {1+(x^2//2)}), x ne 0 , f(0) =8 may be continuous function is

Let f(x)=(e^(x)-1)^(2n)/(sin^n (x//a)(log (1+(x//a)))^n for x ne 0 . If f(0)=16^n and f is a continuous function, then the value of a is

Let ((e^(x)-1)^(2))/(sin((x)/(a))log(1+(x)/(4)))" for "x ne 0 and f(0)=12. If f is continuous at x = 0, then the value of a is equal to

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

If f(x)={{:(((5^(x)-1)^(3))/(sin((x)/(a))log(1+(x^(2))/(3)))",",x ne0),(9(log_(e)5)^(3)",",x=0):} is continuous at x=0 , then value of 'a' equals

If f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2))) for x!=0, then f has

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f(x) = x^(a) log x and f(0) = 0 then the value of alpha for which ...

    Text Solution

    |

  2. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  3. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  4. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  5. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  6. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  7. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  8. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  9. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  10. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  11. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  12. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  13. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  14. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  15. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  16. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  17. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  18. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  19. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  20. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |