Home
Class 12
MATHS
f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=...

`f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sqrt(x))-4), x gt 0):}` If the function be continuous at x = 0, then a =

A

4

B

6

C

8

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and right-hand limit at \( x = 0 \) are equal to \( f(0) \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{1 - \cos(4x)}{x^2} & \text{if } x < 0 \\ a & \text{if } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} & \text{if } x > 0 \end{cases} \] ### Step 1: Calculate the left-hand limit as \( x \) approaches 0 from the left (\( x \to 0^- \)) We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos(4x)}{x^2} \] Using the trigonometric identity \( 1 - \cos(x) = 2 \sin^2\left(\frac{x}{2}\right) \), we can rewrite: \[ 1 - \cos(4x) = 2 \sin^2(2x) \] Thus, we have: \[ \lim_{x \to 0^-} \frac{1 - \cos(4x)}{x^2} = \lim_{x \to 0^-} \frac{2 \sin^2(2x)}{x^2} \] ### Step 2: Rewrite the limit We can express \( \sin^2(2x) \) in terms of \( x \): \[ \lim_{x \to 0^-} \frac{2 \sin^2(2x)}{x^2} = \lim_{x \to 0^-} \frac{2 \sin^2(2x)}{(2x)^2} \cdot 4 = 4 \lim_{x \to 0^-} \frac{\sin^2(2x)}{(2x)^2} \] ### Step 3: Apply the limit property Using the limit property \( \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \): \[ \lim_{x \to 0^-} \frac{\sin^2(2x)}{(2x)^2} = 1 \] Thus, we have: \[ \lim_{x \to 0^-} \frac{1 - \cos(4x)}{x^2} = 4 \cdot 1 = 4 \] ### Step 4: Calculate the right-hand limit as \( x \) approaches 0 from the right (\( x \to 0^+ \)) Now we calculate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} \] To simplify this limit, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{(\sqrt{16 + \sqrt{x}} - 4)(\sqrt{16 + \sqrt{x}} + 4)} = \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{(\sqrt{16 + \sqrt{x}})^2 - 4^2} \] This simplifies to: \[ \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{16 + \sqrt{x} - 16} = \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{\sqrt{x}} = \lim_{x \to 0^+} (\sqrt{16 + \sqrt{x}} + 4) \] As \( x \to 0 \), \( \sqrt{16 + \sqrt{x}} \to \sqrt{16} = 4 \): \[ \lim_{x \to 0^+} (\sqrt{16 + \sqrt{x}} + 4) = 4 + 4 = 8 \] ### Step 5: Set the limits equal to ensure continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) \] Thus: \[ 4 = a = 8 \] ### Conclusion Since both limits must equal \( a \), we find that: \[ a = 8 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let : f(x) {:(=(1-cos 4x)/(x^(2))", ... "x lt 0 ),(= a", ... " x = 0 ),(= (sqrt(x))/(sqrt(16-sqrt(x))-4)", ... "x gt 0 ):} If f(x) is continuous at x = 0 , then : a =

Let f(x) = {((1-cos 4x)/(x^(2))",",x lt 0),(a",",x = 0),((sqrt(x))/(sqrt(16+sqrt(x))-4))",",x gt 0):} Then, the value of a if possible, so that the function is continuous at x = 0, is……….

If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ", if " x = 0 ),(=(sqrt(x))/(sqrt(625+sqrt(x))-25)", if " x gt 0 ):} is continuous at x = 0 , then a =

If f(x) is continuous at x=0 , where f(x)={:{((1-cos 4x)/(x^(2))", for " x lt 0),(k", for " x =0),((sqrt(x))/(sqrt(16+sqrt(x))-4)", for " x gt 0):} , then k=

Let f: R to R be a function defined as f(x)={(,(sin (a+1)x+sin 2x)/(2x), if x lt 0),(, b, if x=0), (,(sqrt(x+bx^(3))-sqrtx)/(bx^(5/2)), if x gt 0):} If f is continuous at x=0 then the value of a+b is equal to :

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

Let f(x)={(1-cos4x)/(x^(2)),quad if x<0a,quad if x=0(sqrt(x))/(sqrt(16+sqrt(x))-4),quad if x Determine the value of a so that f(x) is continuous at x=0 .

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f(x) =(e^(x)-1)^(4)/(sin(x^(2)/lambda^(2))log (1+x^(2)/2)), x ne 0 ...

    Text Solution

    |

  2. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  3. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  4. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  5. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  6. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  7. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  8. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  9. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  10. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  11. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  12. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  13. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  14. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  15. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  16. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  17. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  18. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  19. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  20. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |