Home
Class 12
MATHS
The function f(x) = {{:(x + asqrt(2) sin...

The function `f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx +6, pi//4 le x le pi//2),(a cos 2x-b sin x, pi//2 lt x le pi):}` is continuous for `0 le x le pi` then a, b are

A

`pi/6, pi/12`

B

`pi/3, pi/6`

C

`pi/6, -pi/12`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous over the interval \( [0, \pi] \). The function is defined piecewise, and we need to check the continuity at the points where the definition changes, specifically at \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Check continuity at \( x = \frac{\pi}{4} \) We need to ensure that: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \lim_{x \to \frac{\pi}{4}^+} f(x) \] **Left-hand limit:** For \( 0 \leq x < \frac{\pi}{4} \): \[ f(x) = x + a\sqrt{2} \sin x \] Thus, \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \frac{\pi}{4} + a\sqrt{2} \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a\sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a \] **Right-hand limit:** For \( \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \): \[ f(x) = 2x \cot x + 6 \] Thus, \[ \lim_{x \to \frac{\pi}{4}^+} f(x) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + 6 = \frac{\pi}{2} + 6 \] Setting the two limits equal for continuity: \[ \frac{\pi}{4} + a = \frac{\pi}{2} + 6 \] Rearranging gives: \[ a = \frac{\pi}{2} + 6 - \frac{\pi}{4} = \frac{\pi}{4} + 6 \] ### Step 2: Check continuity at \( x = \frac{\pi}{2} \) We need to ensure that: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] **Left-hand limit:** For \( \frac{\pi}{4} < x < \frac{\pi}{2} \): \[ f(x) = 2x \cot x + 6 \] Thus, \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = 2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + 6 = 0 + 6 = 6 \] **Right-hand limit:** For \( \frac{\pi}{2} < x \leq \pi \): \[ f(x) = a \cos(2x) - b \sin x \] Thus, \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = a \cos(\pi) - b \sin\left(\frac{\pi}{2}\right) = -a - b \] Setting the two limits equal for continuity: \[ 6 = -a - b \] ### Step 3: Solve the equations Now we have two equations: 1. \( a = \frac{\pi}{4} + 6 \) 2. \( 6 = -a - b \) Substituting the first equation into the second: \[ 6 = -\left(\frac{\pi}{4} + 6\right) - b \] \[ 6 = -\frac{\pi}{4} - 6 - b \] \[ b = -\frac{\pi}{4} - 12 \] ### Final Values Now we can summarize our results: - \( a = \frac{\pi}{4} + 6 \) - \( b = -\frac{\pi}{4} - 12 \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

If 0 le x le pi/2 then

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) = (x(1+ a cos x) - b sinx)/x^(3), x ne 0 f(0) = 1. If f(x) is...

    Text Solution

    |

  2. f(x) = {{:((1- cos 4x)/x^(2), x lt 0),(=a, x =0),(=sqrt(x)/(sqrt(16+sq...

    Text Solution

    |

  3. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  4. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  5. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  6. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  7. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  8. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  9. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  10. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  11. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  12. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  13. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  14. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  15. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  16. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  17. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  18. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  19. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  20. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |